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(3+1)次元の格子理論をTNで計算する
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✔ (3+1)次元の場の量子論をTN法で計算したい

✔ 特に, 従来のMC計算ではアクセスできない問題設定に取り組みたい

✔ 最終的な目標の一つは有限温度・密度のQCD

✔ Fermionicな自由度との相性がいい

✔ 連続ゲージ自由度には正則化が必要

✔ HEP分野に軸足を置いて, TN計算の応用例を見ていく

Cf. Talk by ⽇⾼さん

Cf.  Other HEP applications of TN: Talks by ⽟岡さん, 桑原さん



A possible load map
✔ 低次元から高次元へ

✔ 比較的単純な自由度を持つモデル
から内部自由度に富んだ理論へ

calculations that would ultimately replace the use of event
generators such as PYTHIA (Sjostrand et al., 2015).
The simplest starting point for the real-time evolution is the

evolution operator expð−iĤt=ℏÞ acting on the Hilbert space
of the quantum Hamiltonian Ĥ. We provide a first look at
the transfer matrix that smoothly connects the “classical”
Lagrangian approach to the Hilbert space used in the
Hamiltonian formalism. We discuss various types of dualities
(geometrical and topological) that are often used together and
mistaken for one another.
For the models in the Kogut sequence, the bosonic field

variables and the symmetry groups are compact. General
mathematical theorems, namely, the Pontryagin duality
(Pontryagin, 1939) and the Peter-Weyl theorem (Peter and
Weyl, 1927), guarantee that functions over compact groups
can be expanded in terms of discrete sums of representations.
This is called the “character expansion” and was exploited to
calculate strong coupling expansions (Balian, Drouffe, and
Itzykson, 1975) or introduce new variables on geometrically
dual lattice elements (Savit, 1980).
The discreteness of the character expansion provides a

natural starting point for building approximate reformulations
of lattice models suitable for quantum computing or quantum
simulation experiments. The Ising model is an elementary
example where the Hilbert space of the transfer matrix can be
implemented with a set of qubits, the basic components of
actual quantum computers that exist in a linear superposition
of two states j0i and j1i, rather than being just on or off like
the bits of a classical computer. For models with continuous
fields, character expansions allow us to perform the “hard
integrals” analytically without needing to approximate the
numerical discretizations that break the continuous sym-
metries. Demonstrating the power of the character expansion
is one of the main goals of this review. Examples of quantum
computations and simulations are provided at the end of
Sec. III. In Sec. IV, we clarify the use of the terms “classical”
and “quantum” in various contexts and make connections with
other approaches (Schollwöck, 2011b; Haegeman and
Verstraete, 2017; Ran et al., 2020; Cirac et al., 2021).
Section V introduces the tensor reformulation for the Ising

model. SVD, truncation, and the TRGmethod are discussed in
Sec. VI. Spin models with an Oð2Þ symmetry or with discrete
subgroups are discussed in Sec. VII. In Sec. VIII, we derive
expressions for local tensors in the simple case of a non-
Abelian spin model with Oð3Þ symmetry. We also find tensor
expressions for effective theories of gauge theories known as
principal chiral models.
Models with local gauge symmetry are introduced in

Sec. IX. We first consider Abelian gauge theories and work
up in complexity to tensor expressions for non-Abelian gauge
theories as well.
In Sec. X, tensor network expressions for the real and the

complex ϕ4 theory are derived. For models with noncompact
fields such as the scalar ϕ4 theory, the Gaussian quadrature
rule can be used to extract discrete degrees of freedom, just as
the gauge degrees of freedom are discretized via character
expansions. The accuracy of the tensor network approach is
shown for the real-field case, and an ability to deal with a
severe sign problem is shown in the complex-field case.

In Sec. XI, we present tensor formulations for models with
fermionic degrees of freedom. In general, fermions fit in well
with the tensor (and discrete) approach thanks to the nilpo-
tency of the Grassmann variables. In the section, various
models that contain fermions such as pure fermions, gauged
fermions, and fermions combined with scalars are discussed.
In Sec. XII, we rediscuss the transfer matrix using the tensor

formalism and broaden the perspective. Recent TLFT deve-
lopments regarding symmetries, topological solutions, and
quantum gravity are discussed in Sec. XIII.

II. LATTICE FIELD THEORY

A. The Kogut sequence: From Ising to QCD

In the early 1970s, QCD appeared to be a strong candidate
for a theory of strong interactions involving quarks and
gluons. However, the perturbative methods that provided
satisfactory ways to handle the electroweak interactions of
leptons failed to explain confinement, mass gaps, and chiral
symmetry breaking. A nonperturbative definition of QCD was
needed. In 1974, Wilson proposed (Wilson, 1974) a lattice
formulation of QCD where the SUð3Þ local symmetry is exact.
As this four-dimensional model is fairly difficult to handle
numerically, a certain number of research groups started
considering simpler lattice models in lower dimensions and
then increased symmetry and dimensionality. This led to a
sequence of models, sometimes called the “Kogut ladder,” that
appears in the reviews of Kogut (1979, 1983) and was later
addressed with small modifications by Polyakov (1987) and
Itzykson and Drouffe (1991).
The sequence is approximately the following:
(1) D ¼ 2 Ising model
(2) D ¼ 3 Ising model and its gauge dual
(3) D ¼ 2 Oð2Þ spin and Abelian Higgs models
(4) D ¼ 2 fermions and the Schwinger model
(5) D ¼ 3 and 4Uð1Þ gauge theory
(6) D ¼ 3 and 4 non-Abelian gauge theories
(7) D ¼ 4 lattice fermions
(8) D ¼ 4 QCD

This sequence should not be understood in a rigidway as if each
step is necessary for the next step. For instance, steps (3)–(5) can
be interchanged, and the problems involving fermions have
specific features that are not easily compared to those involving
only bosonic fields. The message that we want to convey is that
there is an approximate roadmap that has proven to be effective
for the classical approach of lattice field theory in dealing with
static problems using importance-sampling (Monte Carlo)
methods. We advocate following a similar path to develop
the quantum versions of these models and deal with real-time
evolution and other problems not accessible with classical
methods. The difference between quantum and classical is
explained more precisely in Sec. IV.A. A similar path is
followed to develop numerical coarse graining.

B. Classical lattice models and path integral

In this section we introduce lattice versions of classical field
theory models. At this point, we point out that, while we
provide definitions of the fields, notations, and acronyms or

Meurice, Sakai, and Unmuth-Yockey: Tensor lattice field theory for renormalization …
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Meurice-Sakai-Unmuth−Yockey,Rev.Mod.Phys.94(2022)025005

✔ 時空間3次元および4次元の場合での
具体的なTN計算をKogut sequence
に沿って見ていく
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高次元系に対するTN法
✔ TRG

✔ TTN, PEPS

✔ Gauged Gaussian PEPS (GGPEPS) + Variational MC

・分配関数, 経路積分のTN表現を近似的に縮約する

・3,4次元系で最もよく用いられているTN手法

・連続自由度の正則化が必要

・TTN, PEPSで表現された基底状態を最適化していく

・イタリアのグループを中心にTTNによる高次元(4次元を含む)計算が進められている

・物理系が持つ対称性を尊重してPEPS表現を構成し, その表現形式を活用してVMCする

・連続的ゲージ自由度の正則化が不要

・ドイツを中心としたヨーロッパのグループにより精力的な研究が進められている

Cf. Talks by 奥⻄さん, ⼤久保さん, 上⽥宏さん, ⻄野さん

Cf. Talk by 松本さん

Cf. Talks by 本間さん, 上⽥篤さん, 中⼭さん, ⼤⽊さん, 藤堂さん, 武⽥さん
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3次元系でのTN計算

From Ising to SU(2) Yang-Mills



Ising模型 (TRG)
✔ 𝑫 ≤ 𝟏𝟔の計で算臨界点が極めて精度良く決定されている

Xie-Chen-Qin-Zhu-Yang-Xiang,PRB86(2012)045139

COARSE-GRAINING TENSOR RENORMALIZATION BY . . . PHYSICAL REVIEW B 86, 045139 (2012)
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the Monte Carlo result.27 Our result for the specific heat agrees
with the Monte Carlo one. At the critical temperature, Tc =
4.511544, the internal energy is found to be Uc = −0.995592
for D = 14. This value of Uc, as shown in Table I, also agrees
well with other published data.

From the temperature dependence of the specific heat
around the critical point, one can estimate the critical exponent
of the specific heat with the formula,

C ∼ t−α, (16)

where t = |1 − T/Tc|. However, as the specific heat data are
obtained simply from the numerical derivative of the internal
energy, the accuracy of the specific heat data is much less than
that of the internal energy, especially around the critical point.
This causes a big error in the determination of the exponent α
with the above formula. This problem can be solved by directly
evaluating this exponent from the temperature dependence of
the internal energy. From the temperature integration of the
specific heat, it is simple to show that the internal energy
should exhibit the following critical behavior:

U = Uc + at + bt1−α, (17)

FIG. 8. (Color online) The internal energy and the specific heat
for the 3D Ising model obtained by the HOTRG with D = 14.
The Monte Carlo result (black curve) obtained from an empirical
fit formula given in Ref. 27 is shown for comparison.

TABLE I. Comparison of the internal energy at the critical
temperature Uc for the 3D Ising model obtained by different methods.

Method Uc

HOTRG (D = 16) − 0.990842(3)
Series expansion30 − 0.991(1)
Series expansion31 − 0.9902(1)
Series expansion32 − 0.99218(15)
Monte Carlo27 − 0.990604(4)
Monte Carlo33 − 0.9904(8)
Monte Carlo34 − 0.990(4)

where a and b are unknown parameters which can be
determined by fitting.

Figure 9 shows the fitting curves for the internal energy
around the critical point obtained with Eq. (17). The critical
exponent is found to be α = 0.1023 and 0.1137 for the tem-
perature higher and lower than the critical value, respectively.
These values of the critical exponent are consistent with the
result obtained from the series expansion,28 0.104, and the
Monte Carlo calculation,29 0.111.

Figure 10 shows the temperature dependence of the sponta-
neous magnetization M obtained by the HOTRG with D = 14.
Our data agree well with the Monte Carlo results.35 From the
singular behavior of M , we find that the critical temperature
Tc = 4.511615 for D = 14. Furthermore, by fitting the data of
M in the critical regime with the formula,

M ∼ tγ , (18)

we find that the exponent γ = 0.3295, consistent with the
Monte Carlo29 (0.3262) and series expansion36 (0.3265)
results.

Figure 11 shows the critical temperature Tc determined
from the singular points of the internal energy as well as the
magnetization for D up to 16. The values of Tc obtained from
these two quantities agree with each other. For D = 16, Tc

obtained from the internal energy and the magnetization are
4.511544 and 4.511546, respectively. The relative difference
is less than 10−6. But Tc does not vary monotonically with

FIG. 9. (Color online) The internal energy (D = 14) and its fitting
curves with Eq. (17) around the critical point for the 3D Ising model.
α is the critical exponent for the specific heat.
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FIG. 10. (Color online) Temperature dependence of the magne-
tization for the 3D Ising model (D = 14). The Monte Carlo result is
from Ref. 35. (Inset) Logarithmic plot of the magnetization around
the critical point. The slope of the fitting curve gives the critical
exponent of the magnetization, γ = 0.3295.

D. It becomes converged only when D ! 13, indicating the
importance of keeping a large D in the 3D TRG calculation.
The error in Tc, estimated from the difference between the
values of Tc for D = 15 and D = 16, is also less than 10−6. A
comparison of the values of Tc obtained by different methods
is shown in Table II. Our results agree with the Monte Carlo
data.37–39

The above discussion indicates that the HOTRG works
very well in 3D. The accuracy of the results can be further
improved by applying the HOSRG. However, the HOSRG
calculation costs much more CPU time. A thorough study
with the HOSRG on the 3D Ising model is still in progress
and the results will be published separately.

IV. GROUND STATE AND THERMODYNAMICS OF 2D
QUANTUM LATTICE MODELS

A d-dimensional quantum lattice model is equivalent
to a (d + 1)-dimensional classical model, the HOTRG and

FIG. 11. (Color online) The critical temperature Tc as a function
of the bond dimension D for the 3D Ising model obtained from the
internal energy (U ) and magnetization (M), respectively.

TABLE II. Comparison of the critical point Tc for the 3D Ising
model obtained by different methods.

Method Tc

HOTRG (D = 16, from U) 4.511544
HOTRG (D = 16, from M) 4.511546
Monte Carlo37 4.511523
Monte Carlo38 4.511525
Monte Carlo39 4.511516
Monte Carlo35 4.511528
Series expansion40 4.511536
CTMRG12 4.5788
TPVA13 4.5704
CTMRG14 4.5393
TPVA16 4.554
Algebraic variation41 4.547

HOSRG methods above introduced can be also extended
to study the ground-state and thermodynamic properties of
d-dimensional quantum lattice models. For one-dimensional
quantum lattice models, there are already many mature meth-
ods for studying the ground state as well as the thermodynamic
properties. For example, the ground state can be studied by
the DMRG24 and the thermodynamics can be studied by the
quantum transfer matrix renormalization group (TMRG).44,45

Here we will only discuss how to apply the HOTRG/HOSRG
to a 2D quantum lattice model.

As an example, we will take the 2D quantum Ising model
with a transverse field to show how these methods work. The
Hamiltonian of this model is defined by

H = −
∑

〈ij〉
σ i

zσ
j
z − h

∑

i

σ i
x . (19)

We start by representing the partition function of this model
as a tensor-network model in the 2 + 1 dimensions. By using
the Trotter-Suzuki decomposition formula, we can express the
partition function as19

Z = Tre−βH ≈ Tr[e−τHze−τHx ]L + O(τ 2), (20)

where

Hz = −
∑

〈ij〉
σ i

zσ
j
z , (21)

Hx = −h
∑

i

σ i
x . (22)

β = Lτ is the inverse temperature and τ is a small Trotter
parameter. This partition function can be also expressed as a
product of evolution matrix V ,

Z = TrV L, (23)

where

V = e−τHx/2e−τHze−τHx/2 (24)

is the evolution operator between two neighboring Trotter
layers. To insert the complete basis set between any two of
the exponential terms on the right-hand side of Eq. (20), it is
straightforward to show that V can be expressed as a product of
local tensors. From this, we can express the partition function
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TABLE II. Comparison of the critical point Tc for the 3D Ising
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HOSRG methods above introduced can be also extended
to study the ground-state and thermodynamic properties of
d-dimensional quantum lattice models. For one-dimensional
quantum lattice models, there are already many mature meth-
ods for studying the ground state as well as the thermodynamic
properties. For example, the ground state can be studied by
the DMRG24 and the thermodynamics can be studied by the
quantum transfer matrix renormalization group (TMRG).44,45

Here we will only discuss how to apply the HOTRG/HOSRG
to a 2D quantum lattice model.

As an example, we will take the 2D quantum Ising model
with a transverse field to show how these methods work. The
Hamiltonian of this model is defined by

H = −
∑

〈ij〉
σ i

zσ
j
z − h

∑

i

σ i
x . (19)

We start by representing the partition function of this model
as a tensor-network model in the 2 + 1 dimensions. By using
the Trotter-Suzuki decomposition formula, we can express the
partition function as19

Z = Tre−βH ≈ Tr[e−τHze−τHx ]L + O(τ 2), (20)

where

Hz = −
∑

〈ij〉
σ i

zσ
j
z , (21)

Hx = −h
∑

i

σ i
x . (22)

β = Lτ is the inverse temperature and τ is a small Trotter
parameter. This partition function can be also expressed as a
product of evolution matrix V ,

Z = TrV L, (23)

where

V = e−τHx/2e−τHze−τHx/2 (24)

is the evolution operator between two neighboring Trotter
layers. To insert the complete basis set between any two of
the exponential terms on the right-hand side of Eq. (20), it is
straightforward to show that V can be expressed as a product of
local tensors. From this, we can express the partition function
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d-dimensional quantum lattice models. For one-dimensional
quantum lattice models, there are already many mature meth-
ods for studying the ground state as well as the thermodynamic
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quantum transfer matrix renormalization group (TMRG).44,45

Here we will only discuss how to apply the HOTRG/HOSRG
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As an example, we will take the 2D quantum Ising model
with a transverse field to show how these methods work. The
Hamiltonian of this model is defined by

H = −
∑
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z − h

∑
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x . (19)

We start by representing the partition function of this model
as a tensor-network model in the 2 + 1 dimensions. By using
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where
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∑

〈ij〉
σ i

zσ
j
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β = Lτ is the inverse temperature and τ is a small Trotter
parameter. This partition function can be also expressed as a
product of evolution matrix V ,

Z = TrV L, (23)

where

V = e−τHx/2e−τHze−τHx/2 (24)

is the evolution operator between two neighboring Trotter
layers. To insert the complete basis set between any two of
the exponential terms on the right-hand side of Eq. (20), it is
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Three-state Potts模型 (TRG)
✔ 基底状態の縮退度も測って一次相転移点を決定

Wang-Xie-Chen-Normand-Xiang,Chin.Phys.Lett.31(2014)070503, G.Jha,arXiv:2201.01789[hep-lat]
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FIG. 4. (a) Internal energy per site, (b) specific heat, and
(c) magnetization computed as functions of temperature by
HOTRG for the q = 3 ferromagnetic Potts model on the sim-
ple cubic lattice with bond dimension D = 14. Insets in
panels (a) and (c) show respectively the discontinuities in in-
ternal energy and magnetization at the phase transition which
indicate its first-order nature.

mains in the symmetry-broken phase. Only when T > Tc

does the system enter the fully disordered phase, where
M = 1/3 (all spin components equal). Once again the
first-order nature of the transition is clearly visible in the
sharp drop of the order parameter at Tc [inset, Fig. 4(c)],
which is ∆M = 0.2903 for D = 14.

A more accurate estimate of Tc is essential for the
study of critical properties, and for this we exploit the
symmetry of the tensor-network model to raise the bond
dimension to D = 21. From the temperature dependence
of X we obtain Tc = 1.8165945 for D = 21 [inset, Fig. 5].
However, because the accuracy of HOTRG improves at
larger bond dimensions (Fig. 3), it is necessary to inves-
tigate the behavior of Tc with D. We show in Fig. 5 the
convergence of Tc for the q = 3 case, where it is clear
that the results are not yet in the convergent regime for
any accessible D values. However, because they have al-
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FIG. 5. Transition temperature Tc as a function of bond
dimension D for the q = 3 ferromagnetic Potts model on
the simple cubic lattice. Inset: behavior of X (Eq.10) as a
function of temperature for D = 21, where the abrupt step in
the curve gives a phase transition at Tc = 1.8165945.

most converged for D = 21, we are currently able to es-
timate the true transition temperature and error bar as
Tc = 1.8166(5), which sets a valuable additional bench-
mark. A comparison of Tc obtained by different methods
is shown in Table II, where the D = 21 HOTRG result
agrees well (relative error 10−4) with the most recent
Monte Carlo simulations [5].

On the other hand, the lack of convergence even by the
most sophisticated HOTRG methods and measures indi-
cates that the 3-state Potts model is a genuinely hard
problem. To achieve the same type of convergence as
in the Ising model, within the same calculational frame-
work, requires a still larger tensor dimension D, which is

TABLE II. Comparison of latent heats ∆E and transition
temperatures Tc for the q = 3 ferromagnetic Potts model on
the simple cubic lattice obtained by different methods. The
tensor bond dimensions retained in the HOTRG calculations
of ∆E and Tc were respectively D = 14 and D = 21. L
denotes the largest system size (cube side) reached in the
Monte Carlo simulations.

Method ∆E Tc

Series expansion (1979) [48] 1.7289(12)

Monte Carlo RG (1979) [14] 1.818

Monte Carlo (1982, L = 8) [45] 0.12 1.81

Pair approximation (1982) [45] 0.123 1.879

Monte Carlo (1987, L = 16) [46] 0.2222(7) 1.81618(7)

Monte Carlo (1991, L = 36) [47] 0.16062(52) 1.816455(35)

Monte Carlo (1997, L = 36) [18] 0.1614(3) 1.816316(33)

Monte Carlo (2007, L = 50) [5] 0.1643(8) 1.816315(19)

TPVA (2002) [19] 0.228 1.8195

HOTRG (this work) 0.2029 1.8166
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FIG. 4. (a) Internal energy per site, (b) specific heat, and
(c) magnetization computed as functions of temperature by
HOTRG for the q = 3 ferromagnetic Potts model on the sim-
ple cubic lattice with bond dimension D = 14. Insets in
panels (a) and (c) show respectively the discontinuities in in-
ternal energy and magnetization at the phase transition which
indicate its first-order nature.

mains in the symmetry-broken phase. Only when T > Tc

does the system enter the fully disordered phase, where
M = 1/3 (all spin components equal). Once again the
first-order nature of the transition is clearly visible in the
sharp drop of the order parameter at Tc [inset, Fig. 4(c)],
which is ∆M = 0.2903 for D = 14.

A more accurate estimate of Tc is essential for the
study of critical properties, and for this we exploit the
symmetry of the tensor-network model to raise the bond
dimension to D = 21. From the temperature dependence
of X we obtain Tc = 1.8165945 for D = 21 [inset, Fig. 5].
However, because the accuracy of HOTRG improves at
larger bond dimensions (Fig. 3), it is necessary to inves-
tigate the behavior of Tc with D. We show in Fig. 5 the
convergence of Tc for the q = 3 case, where it is clear
that the results are not yet in the convergent regime for
any accessible D values. However, because they have al-
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most converged for D = 21, we are currently able to es-
timate the true transition temperature and error bar as
Tc = 1.8166(5), which sets a valuable additional bench-
mark. A comparison of Tc obtained by different methods
is shown in Table II, where the D = 21 HOTRG result
agrees well (relative error 10−4) with the most recent
Monte Carlo simulations [5].

On the other hand, the lack of convergence even by the
most sophisticated HOTRG methods and measures indi-
cates that the 3-state Potts model is a genuinely hard
problem. To achieve the same type of convergence as
in the Ising model, within the same calculational frame-
work, requires a still larger tensor dimension D, which is

TABLE II. Comparison of latent heats ∆E and transition
temperatures Tc for the q = 3 ferromagnetic Potts model on
the simple cubic lattice obtained by different methods. The
tensor bond dimensions retained in the HOTRG calculations
of ∆E and Tc were respectively D = 14 and D = 21. L
denotes the largest system size (cube side) reached in the
Monte Carlo simulations.

Method ∆E Tc
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Monte Carlo RG (1979) [14] 1.818

Monte Carlo (1982, L = 8) [45] 0.12 1.81

Pair approximation (1982) [45] 0.123 1.879

Monte Carlo (1987, L = 16) [46] 0.2222(7) 1.81618(7)

Monte Carlo (1991, L = 36) [47] 0.16062(52) 1.816455(35)

Monte Carlo (1997, L = 36) [18] 0.1614(3) 1.816316(33)

Monte Carlo (2007, L = 50) [5] 0.1643(8) 1.816315(19)

TPVA (2002) [19] 0.228 1.8195

HOTRG (this work) 0.2029 1.8166
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is shown in Table II, where the D = 21 HOTRG result
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Monte Carlo simulations [5].
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cates that the 3-state Potts model is a genuinely hard
problem. To achieve the same type of convergence as
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Triad RG (𝐷 = 70)                                    𝑇! = 1.8175(15)

𝐷!"#$% = 14
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Cf. 有限密度への拡張: Bloch-Lohmayer-Schweiss-Unmuth−Yockey,PoS,LATTICE2021(2022)062



実𝜙!理論 (TRG)
✔ 結合定数無限大極限でIsing模型になる（Ising模型のfinite-𝝀 generalization）

SA-Kuramashi-Yoshimura, PRD104(2021)034507
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Cf. ATRG: Adachi-Okubo-Todo,PRB102(2020)054432



有限密度O(2)模型 (TRG)
✔ HOTRG, Triad RG, MCの結果を比較. 自由度はキャラクター展開で離散化

Bloch-G.Jha-Lohmayer-Meister,PRD104(2021)094517

E ¼ −
1

V
∂ lnZ
∂β : ð10Þ

We show that the results obtained using the triad tensor
method agree with those from the MC approach, as
illustrated in Fig. 2.
In order to determine the critical coupling, we compute

the second β derivative of the logarithm of the partition
function to determine the “specific heat,”

Cv ¼
β2

V
∂2 lnZ
∂β2 : ð11Þ

Our results shown in Fig. 3 clearly indicate that there is a
peak in the specific heat corresponding to the second-order
phase transition in this model. The location of the peak is
consistent with high-precision results of earlier studies. The
triad data are computed with D ¼ 72 using second-order
finite differences with step size Δβ ¼ 0.01. Decreasing
the step size to reduce discretization errors is problematic
as the systematic errors on lnZ cause large fluctuations on
the standard finite-difference derivatives, and one would
require a larger bond dimension D or more sophisticated
numerical derivative computations to achieve a precise
determination of the peak. The results of such an improve-
ment for the original HOTRG method can be seen in Fig. 3
forD ¼ 15, where we get a smooth behavior for the specific
heat, including the steep phase-transition region. These data
were obtained using a stabilized second-order finite-differ-
ence scheme with step size reduced to Δβ ¼ 10−6. The
stabilized finite-difference scheme was developed to avoid
jumps between values of lnZ computed on close-by
parameter values required for the evaluation of finite
differences. Typically such jumps are caused by degenerate
singular values, or level crossings of singular values, leading
to discontinuous changes of the vector subspaces used to
truncate the coarse-graining tensors. The stabilization uses a
heuristic approach that operates on the singular vectors of the

HOTRG to maximize the overlap between the adjacent
vector subspaces (adjacent under a small change of β in this
case). These stabilized subspaces then improve the smooth-
ness of lnZ for adjacent parameter values used to compute
finite-difference derivatives. The application of stabilized
finite differences to triads is more subtle and left for future
work. Note that observables can also be computed using the
impurity method (e.g., first order for the energy, second
order for the specific heat). Although this method yields
smoother data (which does not necessarily mean more
accurate) than the finite-difference method, it has its own
systematic error because the same singular vectors are used
to truncate the pure and impure tensors.

B. μ= 0, h ≠ 0

In this subsection, we study the model in the presence of a
small symmetry-breaking external field h. The global Oð2Þ
symmetry is broken and the partition function is given by

Z ¼
Z

dΘ
Y

i

eβh cos θi
Y2

ν¼0

eβ cosðθi−θiþν̂Þ: ð12Þ

One can compute the magnetization by either taking a
numerical derivative of lnZ with respect to h or by inserting
an impurity tensor in the tensor network. Here we use the
latter method with the impurity tensor given by

T̃lrudfb ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IlðβÞIrðβÞIuðβÞIdðβÞIfðβÞIbðβÞ

q

× ðIlþuþf−r−d−bþ1ðβhÞ þ Ilþuþf−r−d−b−1ðβhÞÞ:
ð13Þ

FIG. 2. The internal energy obtained using triad TRG with
D ¼ 50, and finite differences with Δβ ¼ 0.02, agrees with the
MC results on a lattice volume of 323.

FIG. 3. Specific heat capacity as a function of β for a 323 lattice
volume. The triad data (orange) are computed withD ¼ 72 using a
second-order finite difference of lnZ with step size Δβ ¼ 0.01.
The HOTRG data (blue) used D ¼ 15 and are computed with a
stabilized second-order finite-difference scheme with Δβ ¼ 10−6.
The peak of Cv suggests that the critical coupling is between β ¼
0.45 and β ¼ 0.46. For reference, we show the infinite-volume
MC result βc ¼ 0.454165 from [26] by the black dashed line.
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The Silver Blaze phenomenon is especially hard to
reproduce numerically as it is closely related to the
cancellations in the original partition function, which also
lead to the sign problem. This is seen in MC simulations
when reweighting from the phase quenched to the full
theory. In the phase quenched theory the complex action is
replaced by its real part, i.e., the weights in the original
partition function are replaced by their magnitude. The
phase quenched theory has no Silver Blaze, i.e., the particle
number steadily increases with μ. In this case, the Silver
Blaze property of the full theory should emerge from large
cancellations of the phase, however, only at an exponential
cost [36]. Such reweighting simulations of the Oð2Þ model
clearly show that the Silver Blaze is beyond reach using
such methods.
However, as can be seen in Fig. 5, the Silver Blaze can be

nicely reproduced, both by the worm algorithm and by the
tensor method used in this work, and the results from both
methods are in good agreement. In our tensor-network
calculations, ρ is computed using finite differences of lnZ.
We used a relatively small lattice size of 643, which is
primarily due to the large cost of the worm algorithm, as the
volume increases. For the range of β values considered in
the figure, this does not affect the results as the correlation
lengths are small compared to the box size. This was also
verified using tensor computations with volumes up to
10243, which gave results similar to 643. In Fig. 5, we show
how the threshold μc varies with the coupling β as we
approach the continuum limit, i.e., β → βc where the lattice
spacing a → 0. As expected, we see that in the bare theory
the threshold tends to zero as β → βc. If we were to
renormalize the lattice quantum field theory (see [34]) and

set the lattice spacing in physical units, then the physical
chemical potential, μph ¼ μ=a, would have a threshold
ðμcÞph corresponding to the particle mass, independently of
the value of β in the vicinity of βc (up to discretization
errors).
We can also use the tensor methods to study the Oð2Þ

model at nonzero temperature. For this we note that the
extent of the Euclidean time axis is inversely proportional
to the physical temperature, i.e., T ¼ 1=ðNtaÞ. The temper-
ature can be set by varying the number of temporal sites Nt
and can be further fine-tuned by changing the coupling β,
which determines the lattice spacing.
In the standard HOTRG, the iterative coarse-graining

procedure alternates between the different directions, here
t, x, y, until the complete network has been reduced to a
single tensor. This is a natural (although not necessarily
best) coarse-graining order for an isotropic tensor on a
symmetric lattice (Nt ¼ Nx;y).
In the case of asymmetric lattices (Nt ≠ Nx;y), a different

strategy is often employed to compute results for varying
values of Nt, i.e., temperatures, in an efficient way. The
procedure consists of performing all spatial contractions on a
single time slice to produce a time transfer matrix [15]. This
time transfer matrix is then multiplied to itself to attain the
required number of time slices. Unfortunately, it turns out
that such a procedure only converges to the correct result,
obtained using the worm algorithm, for large Nt (zero
temperature) and often yields substantial deviations for
nonzero temperatures. An alternative procedure is used in
Ref. [18] where finite temperature results are obtained in
2þ 1-dimensional Z2 gauge theory for small Nt by com-
pletely contracting the temporal direction first and then
coarse-graining the remaining spatial directions.
For anisotropic tensors, e.g., caused by a chemical

potential, special care has to be taken to the coarse-
graining order, i.e., the order in which the directions get
contracted, to avoid large truncation errors. We therefore
developed a method that implements an improved con-
traction order (ICO). This new method dynamically
selects the next contraction direction to minimize the
local truncation error. Its flexibility also makes it very
useful for the treatment of asymmetric lattices, and the
method performs well for both small and large Nt.

5

The ICO method was implemented as an enhancement
of the standard HOTRG method. It was not yet imple-
mented for the TTRG method because of the peculiar
anisotropy of the triad factorization.

FIG. 5. We compare the results obtained using triad TRG
(symbols) with D ¼ 50 and worm algorithm (smooth lines) for
the dependence of ρ on μ for some values of the coupling β on
both sides (phases) of the critical coupling on a lattice of size 643.
We mark the threshold value μc, which is related to the mass gap.
It is clear that the mass gap decreases (and correlation length
increases) as we go from β ¼ 0.42 to β ¼ 0.45 and would go to
the CFT limit as β → βc ≈ 0.45417.

5For small anisotropy (small chemical potential) and Nt < Nx;y
the ICO procedure typically alternates the coarse graining between
all directions until the time direction is completely contracted.
Then the tensor is reduced to an effective two-dimensional spatial
tensor, and the remaining spatial contractions are performed,
alternating over x and y like in the standard two-dimensional
HOTRG. This specific procedure can also be ported to the triads.
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To validate the nonzero temperature tensor results, we

used the worm algorithm [32] at nonzero μ and found good
agreement. This is illustrated in Fig. 6 where we show the
temperature dependence of the three-dimensional Oð2Þ
model by studying the system on a 642 × Nt lattice for
Nt ¼ 2, 4, 8, 16. The tensor results were obtained using the
ICO enhanced HOTRG method with D ¼ 13. The particle
number density was computed using a stabilized finite-
difference scheme (see Sec. III A), and tensor manipulations
were performed using the TBLIS library [37].

IV. SUMMARY AND DISCUSSION

In this work, we have carried out the first tensor-network
study of the three-dimensional classicalOð2Þmodel at both
zero and nonzero magnetic field, chemical potential, and
temperature. The results obtained for the internal energy
and the specific heat are consistent with MC data. However,
our determination of the critical coupling is several orders
of magnitude less precise than state-of-the-art MC results.
We calculated the magnetization in the presence of a small
magnetic field by inserting an impure tensor. At nonzero
chemical potential, we were able to reproduce the Silver
Blaze phenomenon at zero temperature. We considered
nonzero temperature by varying the temporal extent of the
lattice and computed the particle density at nonzero
chemical potential. Our results agree with those obtained
with the worm algorithm.
In the Appendix, we discuss the convergence of lnZ=V

with the bond dimension D. We expect that this conver-
gence will play a key role in a more precise determination
of βc and in exploring the corresponding field-theory limit
in the future. To this end, improved coarse-graining
schemes will have to be developed. Such improvements

will also be useful to explore other interesting spin models
in the future.
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APPENDIX: CONVERGENCE OF lnðZÞ WITH D

It is a known problem that the truncations used in
tensor-network methods sometimes lead to drastic mod-
ifications of the properties of the model whose thermo-
dynamic behavior one intends to study. In this appendix,
we investigate the convergence of lnZ=V with the local
bond dimension D in the triad approximation of the
HOTRG method, in the large-volume limit for the
three-dimensional cubic Ising and Oð2Þ models. We tune
the couplings close to their critical values to make the
dependence on D prominent. This is illustrated in Figs. 7
and 8. The shaded areas enclose the various fits to the data
(corresponding to various fit ranges and different fit
formulas, including the ansatz aþ bD−c). The extrapo-
lation to D → ∞ can be read off from the intercept with
the vertical axis. The convergence for the Ising model is
faster than for the Oð2Þ model, which may hint to a
different efficiency of tensor methods for systems with

FIG. 6. We use the HOTRG with D ¼ 13, improved contrac-
tion order, and stabilized finite differences to compute the particle
density ρ for a 642 × Nt lattice with Nt ¼ 2, 4, 8, 16 (symbols) at
β ¼ 0.44 and compare to the results obtained using the worm
algorithm (smooth lines). There is clear indication that as we
move towards zero temperature, the behavior we see in Fig. 5
starts to emerge.

FIG. 7. Dependence of lnZ=V on the bond dimension D on a
lattice of volume ð215Þ3 at β ¼ 0.45417 for the three-dimensional
Oð2Þ model obtained using the triad method. The red line shows
the result of a linear fit using all data points.
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𝐷#2345 = 50

𝑉 = 326 𝑉 = 326

𝐷!"#$% = 15

𝐷#2345 = 72

𝐷#2345 = 50
𝐷!"#$% = 13

𝑁7 = 64

𝛽 = 0.44

✔ 𝜷 → 𝜷𝒄でmass gapが小さくなっていく様子を有限密度計算から確認

8/28

Cf. Triad RG: Kadoh-Nakayama,arXiv:1912.02414[hep-lat]



SU(2)プリンシパルカイラル模型 (TRG)
✔ O(4) Heisenberg模型と等価で, massless 2-flavor QCDと同じuniversalityである可能性

SA-G.Jha-Unmuth−Yockey,Lattice2023, SA-G.Jha-Unmuth−Yockey, in progress

✔ 自由度はキャラクター展開で離散化
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Cf. Critical exponents by MC simulation: Kanaya-Kana,PRD51(1995)2404
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有限温度ℤ𝟐純ゲージ理論 (TRG)
✔ (d+1)次元SU(N), ℤ𝒏格子ゲージ理論の有限温度相転移はd次元ℤ𝒏スピン模型と同じ

universality classになると予想されている (Svetitsky-Yaffe予想)

Kuramashi-Yoshimura,JHEP08(2019)023
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This work

Nτ Nσ βc(∞) ν B χ2/d.o.f. βX1
c βX2

c

2 [512, 4096] 0.656097(1) 1.00(1) 0.116(6) 0.086 0.656094(1) 0.656094(1)

3 [512, 4096] 0.711150(4) 0.99(4) 0.10(3) 0.047 0.711151(1) 0.711151(1)

5 [512, 4096] 0.740730(3) 0.96(5) 0.08(3) 0.012 0.740734(1) 0.740734(1)

Ref. [19]

Nτ Nσ βc(∞) ν

2 4, 8, 16, 32 0.65608(5) 1.012(21)

3 24 0.71102(8)

5 40 0.74057(3)

Table 1. Fit results for the critical point βc(∞) and the critical exponent ν at Nτ = 2, 3, 5. βX1
c

and βX2
c are determined at Nσ ≤ 220. The value of ν at Nτ = 2 in ref. [19] is evaluated using the

pair of data at Nσ = 16 and 32.
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✔ Temporalゲージ固定+温度方向を先に縮約して2次元のTNに落とす

✔ 2次元Ising模型とconsistentな臨界指数𝜶, 𝝂
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ℤ𝟐ゲージ・Higgs模型 (TRG)
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ℤ𝟑純ゲージ理論 (GGPEPS) 1/2
✔ あらゆるゲージ場の配位について足し上げた状態 ⟩|𝚿 = ∑𝓖𝚿 𝓖 ⟩|𝓖 を考える

Emonts-Bañuls-Cirac-Zohar,PRD102(2020)074501

✔ Gauged Gaussian PEPSでは仮想フェルミオン自由度を使って𝚿 𝓖 を構成していく

𝚿 𝓖 = 𝛀𝐯 ∏ℓ𝝎ℓ∏ℓ𝓤𝓖 ℓ ∏𝒙𝑨 𝒙 𝛀𝐯

each outgoing and ingoing leg of each vertex of the lattice.
They are chosen to be fermionic to enable a consistent
coupling to fermionic matter which obeys the correct
statistics [25]. Although, for the description of a pure
gauge theory, the coupling to matter is not necessary.
The construction of a GGPEPS consists of three essential

parts (cmp. Fig. 3). First, the fiducial operatorsAðxÞ create
virtual fermionic states out of the modes associated with
each site. They are constructed in a way that guarantees
virtual gauge invariance (used in general PEPS construc-
tions for imposing global symmetries). This step of the
construction can be readily extended to include more
virtual fermions, in a similar spirit that the bond dimension
of a PEPS can be increased. The details of the construction
with multiple layers are given below. Then, some of the
virtual modes on each site are rotated with respect to the
physical gauge fields of the theory, in a particular way that
lifts the virtual symmetries to physical ones [25]. This is
done by gauging operators UG acting on the virtual
fermions and controlled by the gauge field configuration.
Finally, the pairs of virtual fermionic modes on the two
sides of each link are projected onto maximally entangled
states by projection operators ωl. That contracts the state
from its local constituents and introduces correlations to
the state.
The wave function can thus be written as

ΨðGÞ ¼ hΩvj
Y

l

ωl

Y

l

UGðlÞ
Y

x

AðxÞjΩvi; ð9Þ

where the products are over all links l of the lattice and
jΩvi is the fermionic Fock vacuum. In the following, we
will treat the three main components of the construction A,

UG, and ω in more detail, and see how to make sure that
ΨðGÞ obeys the right symmetry properties. Furthermore,
aiming at an efficient computation of the wave function, we
would like it to be Gaussian, and thus all its constituents
will be Gaussian too.
On each vertex x of the two-dimensional lattice, we

define eight virtual fermionic modes, two associated to
each leg—left, right, up and down. On each leg we label the
two modes by $, and sort them into two groups: ai ¼
flþ; r−; u−; dþg (which we call the negative modes) and
bi ¼ fl−; rþ; uþ; d−g (positive modes). The modes obey
the Dirac anticommutation relation fcðxÞ; c†ðyÞg ¼ δx;y
and fcðxÞ; cðyÞg ¼ fc†ðxÞ; c†ðyÞg ¼ 0, where x, y are
vertices on the lattice and c is a fermionic mode.
We define the virtual electric fields

E0ðx; kÞ ¼ ð−1Þxðk†þðxÞkþðxÞ þ k†−ðxÞk−ðxÞÞ ð10Þ

with k ∈ fr; l; u; dg as well as the generator of the gauge
transformation on the virtual degrees of freedom,

G0ðxÞ ¼ E0ðx; rÞ þ E0ðx; uÞ − E0ðx; lÞ − E0ðx; dÞ: ð11Þ

This can be seen as a version of a Gauss law operator: the
divergence of the virtual electric fields at the vertex. The
staggering is introduced to accommodate the general case
with physical fermions [25] (aiming at the problem of
physical fermion doubling [36] which we do not encounter
in the pure gauge case). It is taken care of already on the
level of electric fields [cmp. (10)] and thus the rest of the
equations can be stated without explicit reference to
staggering.
The fiducial operator AðxÞ which creates the modes

out of the vacuum has to be Gaussian, and be invariant
under transformation generated byG0ðxÞ. Hence, it is given
by [22,24]

AðxÞ ¼ exp
!X

ij

Tija
†
i ðxÞb

†
jðxÞ

"
; ð12Þ

where Tij is a 4 × 4 matrix containing all parameters of the
ansatz. A is a Gaussian operator by construction, and one
can easily inspect that since positive modes are only
coupled to negative ones, the symmetry property,

expðiαG0ðxÞÞAðxÞ expð−iαG0ðxÞÞ ¼ AðxÞ; ð13Þ

is satisfied for every angle α, hence forming a Uð1Þ
parametrization. As such, it holds also for the ZN cases,
with a discrete choice of angles. Due to other symmetry
considerations (e.g., lattice rotation invariance), only two
independent parameters in Tij of initially sixteen remain,
y and z. They couple different modes in a given vertex:
y couples right (up) and left (down) modes in a vertex,
z couples modes that are building corners, e.g., right and up

FIG. 3. Illustration of the state’s construction. The interior of
the grey squares is created by the fiducial operator A. Blue
squares mark virtual modes in the different directions. The bent
lines between the virtual modes illustrate the unnormalized
projectors ω. The gauge fields on the links between the sites
are depicted as green circles. Their coupling to the virtual
respective modes is shown as bent lines as well.

EMONTS, BAÑULS, CIRAC, and ZOHAR PHYS. REV. D 102, 074501 (2020)

074501-4

✔ サイト上の4脚テンソル𝑨 𝒙 , リンク上の射影テンソル𝝎ℓは仮想フェルミオンの生成・消滅
演算子で与える. 
特に, 𝑨 𝒙 = 𝐞𝐱𝐩 𝑻𝒊𝒋𝒂𝒊

)𝒃𝒋
) のGaussianで与える

✔ 仮想フェルミオンのモード数が通常のPEPS
のボンド次元に対応する

✔ 構成要素である𝑨 𝒙 や𝝎ℓをGaussianにしたこと
で, 𝚿 𝓖 𝟐の計算が容易になる

✔ 𝚿 𝓖 𝟐 ≥ 𝟎なので

を使ったMC計算が可能(Sign-problem-free MC)

𝑝 𝓖 =
𝚿 𝓖 𝟐

∑𝓖! 𝚿 𝓖$ 𝟐

Cf. Zohar-Burrello,New.J.Phys.18(2016)043008, Zohar-Cirac,PRD97(2018)034510
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ℤ𝟑純ゲージ理論 (GGPEPS) 2/2
✔ GGPEPSに基づくMC計算

Emonts-Bañuls-Cirac-Zohar,PRD102(2020)074501

gradients and observables, we used the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm [39] to adapt the
parameters of the state. If the gradients and the observables
are calculatedwithMonte Carlo sampling, the inherent error
of the estimates makes the use of a line-search based
algorithm like BFGS difficult. The fluctuations of the
estimate lead to inconsistencies during the line search which
cause the termination of the algorithm. Thus, we decided to
work with a simple gradient descent algorithm if the
expectation values are estimated with Monte Carlo. After
estimating the energy and the gradients, we adapt the set of
parameters in the opposite direction of the gradient,

α0 ¼ α − ξðiÞ ∂hHi
∂α ; ð31Þ

where ξðiÞ is theweight for the gradient in dependence of the
step. We used ξðiÞ ¼ 0.01 · 0.99i in our simulation. The
choice of parameters and the schedule of ξðiÞmay be further
optimized.

V. RESULTS

Applying the ansatz developed in Ref. [25] to a physical
Hamiltonian, we want to ensure that we are able to capture
relevant physics despite the small number of parameters of
the states. In particular, we want to demonstrate that a
higher number of layers leads to an improved expressibility.
As a first step, we compare to a small system with L ¼ 2,

i.e., four plaquettes, which can be solved with exact
diagonalization (cmp. Fig. 5). Due to the small lattice size,
we can contract the GGPEPS exactly and do not have to use
Monte Carlo. The figure and the inset show good agree-
ment for states at high couplings where the electric energy
is the dominant contribution in the Hamiltonian (1). The
ground state of the electric Hamiltonian is the state with no

electric excitations, i.e., the electric field is zero on all links.
We expect to approximate it well because it is the state that
we obtain if the operator A is equal to the identity. This
happens if both parameters y¼z¼0: Tðy ¼ 0; z ¼ 0Þ ¼ 1.
We observed that the values of y and z approach zero as the
coupling increases.
While the high coupling regime matches well to the

exact values, the low coupling regime, which is dominated
by the magnetic energy, is more challenging. States with
few layers show a divergent behavior at low couplings. The
quadratic divergence is caused by a lack of expressibility of
states with few layers: The parameters approach a constant
for low coupling and the 1=g2 term in the Hamiltonian leads
to the divergence. An increase in the number of layers helps
to systematically improve the states while only linearly
affecting the run-time.
The error around the transition g ≈ 1 does not decrease

when additional layers are used. We attribute this behavior
to the specific ansatz that we are using. We do not expect a
Gaussian PEPS based ansatz to hold at criticality.
Figure 6 shows the energy density of the system for

different lattice sizes for three layers of the parameters. Due
to the larger system sizes, we cannot contract the GGPEPS
exactly. The Monte Carlo estimation uses 104 steps for the
warm-up phase that is performed without measurement and
105 steps for the sampling. Since the Monte Carlo has to be
performed for each variational minimization step, the
number of Monte Carlo steps with measurements is kept
rather small. Especially the calculation of the electric
energy, which features a Pfaffian, is expensive.
The estimates agree very well with the ED data for an

L ¼ 2 system over a large range of the coupling. The
deviations at the phase transition due to the ansatz as
described above. The deviation at very low coupling for
large system sizes originates from the fact that the mini-
mization becomes increasingly costly. Especially the cal-
culation of the Pfaffian in the electric energy is
computationally expensive. While all determinants that

FIG. 5. Convergence of the energy for a L ¼ 2 system. The
solid blue line is the exact diagonalization (ED) result. The
colored dots are exact contractions (ECs) of the ansatz state with
varying number of layers of virtual fermions on the links. The
inset displays the relative error ϵr of the energy with respect to the
exact diagonalization results at high coupling.

FIG. 6. Finite size effects for different system sizes. The blue
line is the exact data for an L ¼ 2 system. All data points are
computed with VMC for different system sizes with three layers
in the construction of the state.
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appear in the calculation of norms can be calculated by
updating previous results if the gauge field is changed, the
Pfaffian has to be recalculated in every step. The Pfaffian is
the singlemost expensive step in the algorithm. Sincewe are
plotting the energy density in relation to a L ¼ 2 system,
deviations can be either finite size effects (in which case the
MC points would be more correct than ED) or errors due to
the Monte Carlo sampling procedure.
Following previous works, we expect the theory to have

two phases [29,35]. According to Elitzur’s theorem [40],
the expectation value of any operator that is not gauge
invariant will vanish, and thus a local order parameter is
ruled out. Instead, following Wegner and Wilson [9,41], we
can analyze the correlation in the different phases by
studying the Wilson loop. The corresponding operator is
gauge invariant and shows different scaling in the different
phases ofZN theories. In the low-coupling regime, which is
dominated by the magnetic partHB of the Hamiltonian, the
expectation value of the Wilson loop follows a perimeter
law which, to lowest order in perturbation theory [35],
reads

hWðR1; R2Þi ∼ expð−κp2ðR1 þ R2ÞÞ: ð32Þ

Here, κp is a constant and 2ðR1 þ R2Þ is the perimeter of
the Wilson loop. The scaling changes in the high coupling
regime, where the electric energy is the dominant contri-
bution to the total energy and the Wilson loop operator
scales with the area of the curve. The area scaling reads to
lowest order in perturbation theory [35],

hWðR1; R2Þi ∼ expð−σR1R2Þ; ð33Þ

where σ is the string tension. Since the potential of static
charges, i.e., charges that are not dynamically coupled to
the gauge fields in the Hamiltonian, increases linearly with
the distance in this phase, it costs an infinite amount of
energy to separate two static charges. The two static
charges are confined.
We can use the states that we obtained using the VMC

procedure for an L ¼ 6 lattice to evaluate the scaling
behavior in the different regimes (cmp. Fig. 7). As before,
we used three layers in the minimization. The Wilson loop
expectation values are recomputed for the minimal param-
eters with 104 warm-up steps and 106 sampling steps. By
fitting (33) to different Wilson loops WðR1; R2Þ of a
maximal size of L=2 and jR1 − R2j < 1, we can obtain
the string tension of the states. The result of the fits for
different couplings is shown in Fig. 7. The Z3 gauge theory
can be mapped to a three state Potts model [30] and the first
order phase transition has been studied with Monte Carlo
[31]. The plot shows that the string tension is almost zero in
the low-coupling phase and rises to a finite value in the
high-coupling, confining phase. Around the transition
region, the minimization becomes difficult due to the

Ansatz we are using. Thus, results in direct vicinity to
the transition region might not be obtained for the ground
state and one has to be careful to use them for an
interpretation of confining or nonconfining behavior
[42]. The range of accessible couplings is limited from
above since the Wilson loop decays exponentially with size
and coupling. The Monte Carlo procedure cannot reliably
resolve the expectation value of the Wilson loop in the high
coupling regime.

VI. CONCLUSION

We show that GGPEPSs are promising ansatz states for
ZN lattice gauge theories in two spatial dimensions. Since
the transition probability between two configurations of the
gauge field is given by the squared norm of a state, the
sign problem is avoided. The norm as well as the gradients
for a given set of parameters can be efficiently computed
with the covariance matrix formalism leading to a scalable
algorithm.
By contracting small systems exactly we show that the

states themselves capture the relevant physics well although
they are based only on a small number of parameters. We
demonstrate a systematic improvement of the energy by
increasing the number of virtual fermions on the links while
impacting the run-time only linearly.
The variational optimization with Monte Carlo is very

successful for large couplings, but gets increasingly diffi-
cult for smaller couplings and larger lattices. In this regime,
the states have to approximate states dominated by the
magnetic interaction in the Hamiltonian. Since the ansatz is
based on the electric vacuum on the links, this regime is
challenging. Additionally, larger lattices lead to higher run-
times, especially in the calculation of the Pfaffian in the
electric energy.
We expect to be able to improve the results of the

Monte Carlo simulation further by changing to a more
advanced sampling scheme. Currently, the algorithm

FIG. 7. String tension for different value of the coupling. The
string tension is extracted by fitting the area law expectation to
Wilson loops of different size. The state is constructed with three
layers of virtual fermions.
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gradients and observables, we used the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm [39] to adapt the
parameters of the state. If the gradients and the observables
are calculatedwithMonte Carlo sampling, the inherent error
of the estimates makes the use of a line-search based
algorithm like BFGS difficult. The fluctuations of the
estimate lead to inconsistencies during the line search which
cause the termination of the algorithm. Thus, we decided to
work with a simple gradient descent algorithm if the
expectation values are estimated with Monte Carlo. After
estimating the energy and the gradients, we adapt the set of
parameters in the opposite direction of the gradient,

α0 ¼ α − ξðiÞ ∂hHi
∂α ; ð31Þ

where ξðiÞ is theweight for the gradient in dependence of the
step. We used ξðiÞ ¼ 0.01 · 0.99i in our simulation. The
choice of parameters and the schedule of ξðiÞmay be further
optimized.

V. RESULTS

Applying the ansatz developed in Ref. [25] to a physical
Hamiltonian, we want to ensure that we are able to capture
relevant physics despite the small number of parameters of
the states. In particular, we want to demonstrate that a
higher number of layers leads to an improved expressibility.
As a first step, we compare to a small system with L ¼ 2,

i.e., four plaquettes, which can be solved with exact
diagonalization (cmp. Fig. 5). Due to the small lattice size,
we can contract the GGPEPS exactly and do not have to use
Monte Carlo. The figure and the inset show good agree-
ment for states at high couplings where the electric energy
is the dominant contribution in the Hamiltonian (1). The
ground state of the electric Hamiltonian is the state with no

electric excitations, i.e., the electric field is zero on all links.
We expect to approximate it well because it is the state that
we obtain if the operator A is equal to the identity. This
happens if both parameters y¼z¼0: Tðy ¼ 0; z ¼ 0Þ ¼ 1.
We observed that the values of y and z approach zero as the
coupling increases.
While the high coupling regime matches well to the

exact values, the low coupling regime, which is dominated
by the magnetic energy, is more challenging. States with
few layers show a divergent behavior at low couplings. The
quadratic divergence is caused by a lack of expressibility of
states with few layers: The parameters approach a constant
for low coupling and the 1=g2 term in the Hamiltonian leads
to the divergence. An increase in the number of layers helps
to systematically improve the states while only linearly
affecting the run-time.
The error around the transition g ≈ 1 does not decrease

when additional layers are used. We attribute this behavior
to the specific ansatz that we are using. We do not expect a
Gaussian PEPS based ansatz to hold at criticality.
Figure 6 shows the energy density of the system for

different lattice sizes for three layers of the parameters. Due
to the larger system sizes, we cannot contract the GGPEPS
exactly. The Monte Carlo estimation uses 104 steps for the
warm-up phase that is performed without measurement and
105 steps for the sampling. Since the Monte Carlo has to be
performed for each variational minimization step, the
number of Monte Carlo steps with measurements is kept
rather small. Especially the calculation of the electric
energy, which features a Pfaffian, is expensive.
The estimates agree very well with the ED data for an

L ¼ 2 system over a large range of the coupling. The
deviations at the phase transition due to the ansatz as
described above. The deviation at very low coupling for
large system sizes originates from the fact that the mini-
mization becomes increasingly costly. Especially the cal-
culation of the Pfaffian in the electric energy is
computationally expensive. While all determinants that

FIG. 5. Convergence of the energy for a L ¼ 2 system. The
solid blue line is the exact diagonalization (ED) result. The
colored dots are exact contractions (ECs) of the ansatz state with
varying number of layers of virtual fermions on the links. The
inset displays the relative error ϵr of the energy with respect to the
exact diagonalization results at high coupling.

FIG. 6. Finite size effects for different system sizes. The blue
line is the exact data for an L ¼ 2 system. All data points are
computed with VMC for different system sizes with three layers
in the construction of the state.

EMONTS, BAÑULS, CIRAC, and ZOHAR PHYS. REV. D 102, 074501 (2020)
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✔ Wilsonループの計算
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ℤ𝟑純ゲージ理論 (iPEPS)
✔ iPEPSによる計算ではゼロ温度での閉じ込め・非閉じ込め相転移点が決定されている

Robina-Bañuls-Cirac,PRL126(2021)050401

where Ui with i ¼ l, u, r, d act on the links and P̃m are
ordinary projectors in the ancilla Hilbert space that project
onto state jm̃i. The local operation on the ancilla
eðδτ=2g

2ÞðŨþŨ†Þ involves Ũ and Ũ† which are nothing but
ordinary U (and U†) operators acting on the ancilla degrees
of freedom. Note, that Eq. (5) is a mathematical identity and
there is no approximation involved. We refer the interested
reader to the original papers for a clean derivation of Eq. (5).
The electrical evolution corresponds to a sequential

action of e−ðδτg
2=4ÞE2

-single-site operators onto the physical
indices of all links. Since we employ the simple update
procedure (SU) this operation does not increase the bond
dimensions and thus carries no truncation errors.
In order to implement the update procedure described

above, we choose a 4 × 4 unit cell as our iPEPS Ansatz as
shown in Fig. 1. The unit cell contains 16 different tensors,
8 of them corresponding to the gauge degrees of freedom
residing on the links (green circles labeled li, with
i ¼ 1;…; 8), plus four tensors for the ancillas (yellow
squares) at the center of the plaquettes and four for the
vertices (blue diamonds). The solid lines represent the
physical lattice of the system that connects links and
vertices while the dashed lines correspond to an auxiliary
lattice that connects ancillas with links. All tensors (links,
ancillas, and vertices) have a physical dimension of d ¼ 3.
iPEPS are able to account for global and local sym-

metries of the theory by imposing a particular block
structure of the tensors [22–24,43–46]. In our case, this
is ensured by applying a gauge projector that enforces the
Gauss-law on the vertices [47]. Since all the terms in the
Hamiltonian commute with GðxÞ, it is enough to apply
the projector at the beginning of the imaginary time
evolution. To cope with potential errors introduced by
the truncation, we subsequently monitor the expectation
value of GðxÞ to be sure to stay in the sector of interest. We
observe that the deviation (with respect to the desired
sector) is not larger than 10−6 in any of our simulations.

Similarly to other tensor networks, iPEPS allow for the
calculation of local observables. This requires an accurate
approximation of the environment around a given tensor. In
this work we calculate the environment with the corner
transfer matrix (CTM) method [48,49], which introduces
an additional bond dimension, controlling the precision of
such approximation [33].
Altogether, this strategy allows us to simulate the

imaginary time evolution of a LGT including the four-
body plaquette operator by means of well-known tools to
the iPEPS practitioners like single and two-body gates.
Phase diagram.—When g2 → ∞, the electric field term

dominates and, in the case of vanishing static charges at all
the vertices, the lowest energy is attained when all links
are in the zero electric flux state. The ground state thus
becomes a product state with zero energy. Similarly, in the
weak coupling regime when g2 → 0 the energy per pla-
quette tends towards the asymptotic value of −1=g2 where
the ground state is again a product state. It is well known
that Zd gauge theories are dual to spin systems with nearest
neighbor interactions [30]. For Z3 in 2þ 1 dimensions the
system undergoes a first order phase transition [31,32]
around some critical coupling g2c.
We have performed calculations at D ¼ 3, 4, 5 for the

whole range of couplings from g2 ¼ 0.01 to g2 ¼ 5.0. As
expected, increasing the bond dimension yields lower
energies in general. We observe that for some values of
the coupling constant near the phase transition, D ¼ 5 was
not able to provide a lower estimate than D ¼ 4. We
attribute this to a lack of full convergence of the SU on
those points. Since for the rest of parameters the relative
difference between the results for D ¼ 4 and 5 is small, we
take D ¼ 4 as our best data-set and use D ¼ 3 and 5 to
estimate numerical errors [33]. Our ground-state energy
results are plotted in Fig. 2.

FIG. 1. iPEPS unit cell.

FIG. 2. Ground state energies for the zero charge sector with
bond dimensions D ¼ 4, 5. We compare to the sector of two
adjacent vertices, respectively, projected to charges 1 and -1 with
bond dimension D ¼ 4, 5. Inset: Transition region zoom in.

PHYSICAL REVIEW LETTERS 126, 050401 (2021)

050401-3

𝑔!& = 1.159 4

Simple update
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i.e. 離散化された温度方向

Bazavov-Berg-Dubey,NPB802(2008)421

𝑔!& = 0.92217 2

14/28



QED (GGPEPS)
✔ U(1)ゲージ自由度を一切正則化せず, GGPEPSに基づくMC計算を実施

Bender-Emonts-Cirac,PRR5(2023)043128

GGPEPS MC
Xu-Zhang-Assaad-Xu-Meng,PRX9(2019)021022

✔ Deconfined U(1) spin liquid相からAFM相への相転移点を決定

The simplest way to detect the deconfinement-
confinement transition may be the Wilson loops, but it
is known that in the presence of matter field, it cannot be
used to detect the topological order of the deconfined
phase (the Uð1ÞD phase); such effects have been dis-
cussed in the literature [71,72]. One suitable way to
demonstrate the deconfinement-confinement transition
here is to show how the photon mass changes over J.
As soon as the matter fields bind to form the particle-hole
condensate, we expect monopoles to proliferate and to
generate a photon mass. The photon mass can be
measured by the correlation of flux quantity θðτÞ [73],
which is defined as θðτÞ ¼

P
□

sin ½curlϕðτÞ%. The photon
mass m is related to the correlation of θðτÞ by
CðτÞ ¼ hθðτ0Þθðτ0 þ τÞi ∼ expð−mτÞ. Figure 3 plots the
estimated photon mass for different system sizes. We find
a signature of an absence of photon mass in the Uð1ÞD
phase and a growth of the photon mass in the AFM phase
as J increases. However, we want to point out that due to
finite-size effects, i.e., uncertainties in extracting the
exponential decay in θðτÞ close to the transition, the
estimation of photon mass near the phase transition is
more qualitative than quantitative.
To further understand the properties of the deconfined

phase, we measure the real-space correlation functions in
the Uð1ÞD phase (at J ¼ 1.25 < Jc). As shown in Fig. 4(a),
the spin-spin correlation shows a power law with the power
2ΔS ¼ 3.1ð4Þ (ΔS is the scaling dimension of spin).
Interestingly, the dimer-dimer correlation function decays
with a similar power law with the power 2ΔD ¼ 2.9ð4Þ (ΔD
is the scaling dimension of the dimer) [Fig. 4(b)]. This
result sheds light on the property of the deconfined phase,
which is proposed in Refs. [7,13] to correspond to the

algebraic spin liquid. It has the unique property that as a
deconfined state emerging from competing orders, the
correlation functions of these competing orders, such as
spin-spin, dimer-dimer, and bond-bond, have the same
power-law decay. If the data in Fig. 4 were deep inside the
confined phase, the decay of spin-spin and dimer-dimer

FIG. 3. Photon massm measured by the flux correlation CðτÞ ¼
hθðτ0Þθðτ0 þ τÞi ∼ expð−mτÞ with θðτÞ ¼

P
□

sin ½curlϕðτÞ%.
Zero photon mass is observed in the Uð1ÞD phase; finite photon
mass is observed in the confined phase. Here we plot the
Nf ¼ 2 case.

(a) (b)

FIG. 2. (a) The antiferromagnetic correlation ratio through the
Uð1ÞD-to-AFM transition at Nf ¼ 2. Here, β ¼ 4L, Δτ ¼ 0.2.
The crossing points are the transition points separating the
deconfined phase and Néel phase. (b) The 1=L extrapolation
of the crossings estimates the Uð1ÞD-to-AFM transition point
Jc ¼ 1.6ð2Þ for Nf ¼ 2.

(a)

(b)

FIG. 4. The log-log plot of real-space decay of (a) spin
correlation functions and (b) dimer correlation functions for
Nf ¼ 2 in the Uð1ÞD phase (at J ¼ 1.25 < Jc). The slope gives a
good estimation of the scaling dimension of spin and dimer. Note
that to avoid even-odd oscillation in the finite-size data, here only
the distance r ¼ odd points are plotted in the Uð1ÞD phase. For
other Nf cases in the following, we adopt the same strategy.

MONTE CARLO STUDY OF LATTICE COMPACT QUANTUM … PHYS. REV. X 9, 021022 (2019)

021022-7

VARIATIONAL MONTE CARLO ALGORITHM FOR LATTICE … PHYSICAL REVIEW RESEARCH 5, 043128 (2023)

FIG. 7. Benchmark for compact QED3 coupled to Nf = 2 species of dynamical fermions at half-filling: we compute the AFM correlation
ratio rAFM in the variational ground state for lattice size up to 16 × 16 (left). The AFM correlation ratio is computed from the spin correlations
and quantifies the strength of antiferromagnetic order. The crossing points are extracted and extrapolated to the thermodynamic limit, resulting
in g2

c,∞ = 0.15(2) (right). This is to be compared with the Euclidean Monte Carlo study in Ref. [53] where also a nonzero coupling was
extrapolated but at a higher value of g2

c,∞,EMC = 0.40(5).

The result for both the full correlation function and only the
connected part is shown in Fig. 8. At stronger coupling the
correlation function decays to a constant value which is lower
than predicted by the Heisenberg model (as to be expected
since g2 = 0.85 is still too small for a Heisenberg description).
The connected correlation function decays exponentially as
expected. At weak coupling the connected correlation
function rather decays algebraically, as expected for a gapless
spin liquid. The form of the decay is very similar to one in the
Euclidean Monte Carlo study (see Fig. 4 in Ref. [53]).

FIG. 8. Benchmark for compact QED3 coupled to Nf = 2
species of dynamical fermions at half-filling: we compute the decay
of spin correlations (both for the full correlation function and the
connected correlation function) in the variational ground state for a
16 × 16 lattice at weak coupling (g2 = 0.1) and at stronger coupling
(g2 = 0.85). Note that we only use odd distances in r to avoid os-
cillations. At strong coupling (where one expects behavior similar to
the Heisenberg model) the full correlations decay to a constant while
the connected part decays exponentially. At weak coupling the decay
is rather algebraically similar to the decay shown in the Euclidean
Monte Carlo study in Fig. 4 in Ref. [53].

We can thus, at least qualitatively, support the claim in
Ref. [53] that there is indeed a deconfined phase which, how-
ever, only persists up to a smaller coupling of g2

c,∞ = 0.15(2)
in our case. One should note though that for the extrapolation
of the AFM correlation ratio and also the computation of
the spin structure factor is very sensitive to errors (as also
mentioned in Ref. [53]) so that a quantitative difference can
be expected.

V. SIGN-PROBLEM AFFECTED REGIMES

In this section, we access regimes where the sign problem
is present in order to demonstrate that our method does not
suffer from the sign problem. Having benchmarked our ansatz
for the scenario of two flavors of fermions at half-filling, i.e.,
zero chemical potential, it is natural to study this configuration
at finite chemical potential.

We specifically want to look at a scenario that has been
used in one dimension with tensor networks [34] to demon-
strate overcoming the sign problem and extend it to two
dimensions. In the referenced work the authors study density-
induced phase transitions due to varying flavor-dependent
chemical potentials. Analogously to Ref. [34], we look at the
case of massless and massive fermions.

We fix the parameters in the Hamiltonian given in Eq. (1)
to the values t = 1, gmag = −1, and g2 = 0.2, similar to the
benchmarked case in the previous section. Only the stag-
gered mass m and the chemical potentials µ1 and µ2 will be
changed. To make this explicit we rewrite the Hamiltonian as

H = HE + HB + HGM + HM(m)

= H0(m) + µ1N1 + µ2N2

= H0(m) + µ+

2
N − µ−

2
!N (39)

with the conserved quantities N1 =
∑

x ψ†
x,1ψx,1 and N2 =∑

x ψ†
x,2ψx,2. Alternatively, one can also use the total number

043128-11

MC 𝒈𝒄𝟐 = 𝟎. 𝟒𝟎 𝟓

GGPEPS 𝒈𝒄𝟐 = 𝟎. 𝟏𝟓 𝟐

Cf. TRGによる純U(1)ゲージ理論の計算: Unmuth−Yockey,PRD99(2019)074502
Cf. TTNによる計算: Felser-Silvi-Collura-Montangero,PRX10(2020)041040
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SU(2)純ゲージ理論 (TRG)
✔ 試行作用を使った配位生成に基づくTN表現の構成

Kuwahara-Tsuchiya,PTEP2022(2022)093B02

✔ 強結合展開と弱結合展開の自由エネルギーを再現することに成功

𝑆 = '
(
∑),+,- ReTr 1 − 𝑈+- 𝑛 − .

(
∑),+ ReTr 𝑈+ 𝑛 + .

(
∑),+ ReTr 𝑈+ 𝑛

PTEP 2022, 093B02 PTEP 2022, 0000-000-00

Fig. 4. The free energy is plotted against β. The statistical errors are smaller than the symbol size. The
strong coupling expansion is expressed by the dashed line, while the weak coupling expansion by the
dotted line.

errors for H = 0.001 are much smaller than those for H = 5, and that the result for H = 0.001
is stable against the change of K while that for H = 5 is not. This again implies that tuning H
is crucial in our algorithm, and K = 16 is suf!cient in the strong coupling regime. Similarly, we
see in Fig. 3 (right) that the statistical errors for H = 20 are much smaller than those for H =
1. However, the result for H = 20 does not look completely stable against the change of K in
the range K ≤ 16. Due to the limitation of available memory, we take K = 16 in the following
calculations. Indeed, as we show in Sect. 3.2, the result for the free energy for 20 ≤ β ≤ 50 agrees
with the weak coupling expansion. Thus, the K dependence for K ≥ 16 with H ∼ 20 is expected
not to be large in the weak coupling regime. From the above results, we set D = 12 and K = 16
in the following calculations.

3.2. Free energy
We show the result for the free energy in Fig. 4. Here, D and K are !xed to D = 12 and K = 16 as
mentioned in the previous subsection. We search for a plateau for each value of β in the 0 < H
≤ 20 region. The free energy is obtained from F = F(H∗), where H∗ has the smallest statistical
error among the plateau. Note that H∗ depends on β. The dependence of the free energy on H
is shown in Fig. 5, where we choose β = 1 and β = 50 as typical small and large values of β,
respectively. We see that there is a plateau in the H ≤ 0.6 region for β = 1 and in the H ≤ 16
region for β = 50. We take H∗ = 0.001 in β ≤ 7 and H∗ > 10 in β ≥ 20. (H = 0 should also
work for β ≤ 7.)

The strong coupling expansion of the free energy is given by

F (β ) = −3β + 3
8
β2 − 3

384
β4 + O(β6), (14)
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有限密度SU(2)Yang-Mills理論 (TTN)
✔ Quantum Link Modelに基づいてSU(2)ゲージ場を正則化
各リンクの取り得る状態を | ⟩𝟎𝟎 , | ⟩𝒓𝒓 , | ⟩𝒓𝒈 , | ⟩𝒈𝒓 , | ⟩𝒈𝒈 の5状態に制限

Cataldi-Magnifico-Silvi-Montangero,arXiv:2307.09396[hep-lat]

(2+1)D SU(2) Yang-Mills Lattice Gauge Theory at finite density via tensor networks

Giovanni Cataldi ,1, 2, 3 Giuseppe Magnifico ,1, 2, 3, 4 Pietro Silvi ,1, 2, 3 and Simone Montangero 1, 2, 3

1Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, I-35131 Padova, Italy.
2Padua Quantum Technologies Research Center, Università degli Studi di Padova.

3Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Padova, I-35131 Padova, Italy.
4Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy.

(Dated: July 19, 2023)

We demonstrate the feasibility of Tensor Network simulations of non-Abelian lattice gauge theo-
ries in two spatial dimensions, by focusing on a (minimally truncated) SU(2) Yang-Mills model in
Hamiltonian formulation, including dynamical matter. Thanks to our sign-problem-free approach,
we characterize the phase diagram of the model at zero and finite baryon number, as a function of
the bare mass and color charge of the quarks. Already at intermediate system sizes, we distinctly de-
tect a liquid phase of quark-pair bound-state quasi-particles (baryons), whose mass is finite towards
the continuum limit. Interesting phenomena arise at the transition boundary where color-electric
and color-magnetic terms are maximally frustrated: for low quark masses, we see traces of potential
deconfinement, while for high quark masses, we observe signatures of a possible topological order.

Non-Abelian gauge field theories, such as Quantum Chro-
modynamics (QCD), lay at the core of the Standard
Model of particle physics. They have been extensively
successful in predicting the physical phenomena of quarks
and gluons with large momentum transfers, where per-
turbative methods apply. Conversely, at the energy scales
of the hadronic world, where perturbative methods fail,
robust numerical frameworks were developed, such as lat-
tice gauge theories (LGTs) [1, 2]. Monte Carlo (MC)
simulations of LGTs characterized essential phenomena
such as the hadronic spectrum, the mechanism for con-
finement [3–5], the chiral symmetry breaking mechanism
[6–9], and the role of topology in QCD at finite tempera-
tures [10–13]. Despite an impressive number of successful
predictions, MC methods are hindered by the infamous
sign problem, which hampers the simulation of a wide
class of physical settings described by complex or nega-
tive actions (finite charge-density phases, fermions, real-
time dynamics), whose numerical investigations remain
– to date – an open challenge [14, 15].
In the last decade, following Feynman’s seminal proposal
and the recent fast development of quantum comput-
ers and simulators, quantum-inspired strategies attacked
this challenge. On one hand side, atomic quantum simu-
lators attempted to reproduce the quantum dynamics of
lattice gauge theories [16–20]. On the other hand, Ten-
sor Networks (TN) methods were identified as a power-
ful sign-problem-free numerical tool for complex lattice
models [21–24]. Exploiting TN algorithms, noteworthy
results have been produced for Abelian gauge theories
in (1+1)D [25–39] and higher spatial dimensions [40–42].
As for non-Abelian gauge symmetries, TN-based simula-
tions were so far limited to one spatial dimension [43–45].
In this work, we overcome such limitation: here we
present the TN simulation of a (2+1)D Hamiltonian
analogous to a SU(2) Yang-Mills LGT, with flavorless
fermionic matter. The 2-colored quarks are discretized
as staggered fermions on the sites of a square lattice,
whereas the non-Abelian gauge fields live on the lattice
bonds, undergoing a Kogut-Susskind dynamics similar to

2D TTN+ EVEN ODD�
SU(2) COLOR-  

FLAVORLESS 
STAGGERED FERMIONS

1/2

…

SU(2) DRESSED SITE BASIS

NO GLUON

=
COLOR 

SINGLETS
BARE 

VACUUM

QUARKS 
(ANTIQUARK HOLES) r g BARYONS

ANTI 
BARYONS

SU(2) TRUNCATED YANG-MILLS THEORY

Figure 1. Sketches of TTN approach to (2+1)D SU(2)
Yang-Mills LGT. Lattice sites host flavorless SU(2)-color-1/2
fermionic fields (red and green) in a staggered configura-
tion (white and yellow). Lattice (blue) links describe gauge
degrees of freedom belonging to a 5-dimensional truncated
Hilbert space. SU(2) Gauss Law is implemented at each lat-
tice site.

a quantum link formalism (QLM) [46–50]. Precisely, this
study considers an electrically-truncated (0)-(0) �

�
1
2

�
-�

1
2

�
representation of the SU(2) gauge field, i.e. the small-

est nontrivial representation (see Fig. 1), where gluons
are hardcore bosons with a spin- 1

2 color input and a spin-
1
2 color output.
We report numerical simulation results for the afore-
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Figure 4. Numerical results of the full SU(2) Hamiltonian in Eq. (2) with OBC and baryon number density b = 0 (left
column) and b = 0.5 (right column). The plots display respectively: (a)-(b) the ground-state energy density "b, (c)-(d) the
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in Eq. (8), enlightening the transition between the magnetic (purple fluxes) and the

electric (no fluxes) phases discussed in Sec. IIA, and (e)-(f) the average particle density % in Eq. (11), which appears peaked in
the g-transition. The pictorial lattice configurations in the finite baryon density b = 0.5 represent states with b extra gapped
hardcore local bosons with low dynamics compatible with the two electric/magnetic phases.

Using a finite-size scaling technique (shown in Fig. 5(b))
we are able to characterize m⇤ as a power-law function
of g2, where a numerical regression yields

m⇤(g2) ' 0.267(4) ·
�
g2

�1.03(2)
, (18)

which is less than 2� deviation from a linear scaling. If we
now assume that the linear scaling holds, then there must
be a critical quark ratio ↵⇤

c = 3.75(6) that determines the
behavior when approaching the continuum limit (recall

that ↵⇤
c depends only on quark color-charge and bare

mass, see Appendix A). Namely, for strong color charges
↵c > ↵⇤

c the the baryon fluid at a ! 0 is gapless, while
for weak charges ↵c < ↵⇤

c the baryon fluid is gapped. We
recall that we are working with energy scales rescaled by
a, thus only quasiparticles that we identify as gapless at
the continuum limit will survive as finite energy excita-
tions in natural units.
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Figure 16. Convergence tests for (a) the pure Eq. (B32) and the (b) full Eq. (B31) Hamiltonian on a 4⇥ 4 lattice in OBC. The
plots display the scaling of the ground-state energy density " (up to its minimal value "min as a function of the bond dimension
� adopted in the TTN simulations. In the plots
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3次元系での応用状況をまとめると
✔ 複数のTN手法(TRG, TTN, PEPS, GGPEPS)による数値計算が報告されており, ゲージ理
論への応用も進んでいる

✔ 相転移点の決定にとどまらず, 臨界指数の決定までできているケースも少なくない

✔ 興味のある理論・モデルの多くが格子上で並進対称性を持つため, 無限系を扱えるTRGや
iPEPSの強みを活かしやすい

✔ 次の重要なステップはSU(3)自由度を含む格子理論だろう
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4次元系でのTN計算

From Ising to QED



Ising模型 (TRG)
SA-Kuramashi-Yamashita-Yoshimura,PRD100(2019)054510
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✔ 数値結果は弱一次転移を示唆. MC法による転移点との間にtensionがある

✔ 内部エネルギー,自発磁化,基底状態の縮退度を計算して相転移点と相転移次数を決定

MC 
Lundow-Markström,
PRE80(2009)031104

𝑇! = 6.68026(2)

HOTRG 𝑇! = 6.650365 5

𝐷!"#$% = 13

𝐷!"#$% = 13
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実𝜙!理論 (TRG)
SA-Kuramashi-Yoshimura,PRD104(2021)034507
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✔ 結合定数無限大極限でIsing模型になる（Ising模型のfinite-𝝀 generalization）

𝐷1#$% = 50

𝐷1#$% = 50

𝜆 = 40

𝜆 = 40

𝜆 = 5

𝟏
𝝀 → 𝟎でIsing模型の転移点へ
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複素𝜙!理論 (TRG)
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✔ 複素スカラー場を𝝓 = 𝒓𝒆𝒊𝜽と表現し, 2種類のGauss求積法を使って離散化

✔ ゼロ温度・無限体積極限に特有のSilver Blaze現象が確認されている
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SA-Kadoh-Kuramashi-Yamashita-Yoshimura,JHEP09(2020)177

𝐷1#$% = 45 𝐷1#$% = 45

𝜆 = 1,𝑚 = 0.1 𝜆 = 1,𝑚 = 0.1

✔ Silver Blaze現象を再現するには作用の虚部が重要
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ℤ𝟐ゲージ・Higgs模型 (TRG)
SA-Kuramashi,JHEP05(2022)102
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ATRG w/ 𝐷 = 52
𝛽/, 𝜂/
= (0.3051 2 , 0.1784(2))

✔ Confinement-Higgs相転移線と臨界終点の決定. ModernなMC法による再計算が望まれる

Δ 𝐿 = 𝐵 𝜂# − 𝜂 $

Δ 𝐿 = 𝐴 𝛽 − 𝛽# %
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ℤ𝟑ゲージ・Higgs模型 (TRG)
✔ Spin-spin couplingが強い領域でMC法とのconsistencyを確認

SA-Kuramashi,JHEP10(2023)077
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observe that the results from the dual simulation and the
conventional approach match very well. However, since at
! ¼ 0:1 and vanishing chemical potential " the influence
of the Higgs field seems to be small, we consider a second,
larger value of !.

The results for hUi and #U at ! ¼ 0:5 and " ¼ 0:0 are
shown in Fig. 5. We now observe quite a change in the
behavior of the observables in comparison to the pure
gauge and ! ¼ 0:1 cases. The phase transition has appar-
ently disappeared and we only find a smooth crossover type
of behavior between the strong and weak coupling phases.
The maximum of the susceptibility #U has shifted to rather
small values—the crossover takes place near $ ¼ 0:28.
The important fact is that, also here at a larger value of
!, where obviously the Higgs field has a much stronger
influence, the results from the conventional approach and
the dual simulation agree very well, again confirming the
correctness of the implementation of the dual approach.

V. THE Z3 GAUGE-HIGGS MODEL
AT FINITE DENSITY

Let us now come to the more interesting case of finite
density. Here conventional simulations fail and the full
potential of the dual approach can be unveiled. Before
we start with the presentation of Monte Carlo results we
first discuss some characteristic features of the dual repre-
sentation at finite density.

A. Finite density dynamics in the dual representation

The dual representation of the Z3 gauge-Higgs model
uses two sets of degrees of freedom: the plaquette occupa-
tion numbers p and the fluxes k. For the analysis of the
mechanisms that drive the systems at finite density it is
useful to think a little bit about the dynamics of the dual
variables, and this subsection is devoted to that task.

The dual degrees of freedom assume values in
f"1;0;þ1g, i.e., px;%&2f"1;0;þ1g and kx;'2f"1;0;þ1g.

A trivial value of the plaquette occupation number, i.e.,
px;%& ¼ 0, comes with a Boltzmann factor of 1 [compare
(16)], while nontrivial values px;%& $ 1 give rise to a factor
of B$ < 1 [see (11) for the definition of B$]. Thus non-
trivial values of plaquette occupation numbers p are sup-
pressed by their Boltzmann factor. On the other hand
configurations with many px;%& ! 0 have a much higher
entropy and (as always) the interplay of entropy and
Boltzmann factor gives rise to the first order transition of
the pure gauge theory discussed in Sec. IVA. The corre-
sponding observables hUi and #U are simple functions of
the plaquette occupation numbers and their fluctuations.
We stress at this point that both observables have a
$-dependent additive term [compare (18)]. For the pla-
quette expectation value the additive term is given by B$,
and hUi is nonvanishing for $> 0 even when all plaquette
occupation numbers p are trivial, since B$ > 0 for $> 0.
Similar to the plaquette occupation numbers, the spatial

flux variables kx;j, j ¼ 1, 2, 3, have a Boltzmann factor of 1
for kx;j ¼ 0 and a Boltzmann factor B! < 1 for kx;j ¼ $1
[see (16)]. As for the case of the plaquette occupation
numbers, we find for the k variables that trivial values of
the spatial fluxes are preferred by the Boltzmann factor.
The temporal flux variables kx;4 are connected with the
Boltzmann factors Ms with s 2 f"1; 0; 1g defined in (6).
For "> 0 we have Mþ1 >M"1 (see also the discussion
below) and temporal flux with kx;4 ¼ þ1 is favored over
negative temporal flux, i.e., kx;4 ¼ "1.
To illustrate the physical picture in terms of the dual

representation, in Fig. 6 we show a few low-lying excita-
tions of the Z3 gauge-Higgs model in the dual representa-
tion. Thick red lines oriented with arrows are used for the k
flux and filled blue squares for nonvanishing plaquette
occupation numbers, and the circles in the squares indicate
the orientation of the plaquette according to the sign of
the corresponding plaquette occupation number px;%&. The
simplest excitations (the lhs diagram in Fig. 6) are an
occupied plaquette surrounded by flux. At each link the
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FIG. 5 (color online). Same as in Fig. 4, but nowe ! ¼ 0:5.
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Infinite-coupling U(N)模型 (TRG)
✔ ゲージ場, フェルミオン場を全て積分してdimer-monomer模型に書き換える

Milde-Bloch-Lohmayer,PoS,LATTICE2021(2022)462

Tensor-network simulation of the strong-coupling * (#) model Pascal Milde
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Figure 7: Chiral condensate hk̄ki as a function of the lattice extent ! for varying small masses for # = 3
and ⇡ = 20.
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Figure 8: Dependence of the chiral condensate on the degree # on a four-dimensional 164 lattice with
< = 0.1, measured using the HT-HOTRG approximation with ⇡ = 20. Since the memory cost for the
initial tensor is still very high for large # , even with HT-HOTRG, we could only reach # = 16. The chiral
condensate depends linearly on # . The fitted slope is given in the table, where the error for the Metropolis
result is a combined statistical and fitting error, while for the HT-HOTRG result we only determine a fitting
error.

finite volume e�ects which obscure the DCSB when the system size becomes smaller than the
correlation length for small masses. This can be seen by fixing the mass and varying the linear
extent ! of the lattice, as is shown in Fig. 7. Just like for the three-dimensional case, we observe
that the lattice has to be increased with decreasing mass to obtain a signal for dynamical chiral
symmetry breaking.

We also investigate the # dependence of the chiral condensate and compare it with the Metropo-
lis results on a 164 lattice with < = 0.1. This is shown in Fig. 8, where we observe good agreement
between both methods. As the chiral condensate is linear in # , we also make a linear fit and report
the slope in the table included in the figure. The limit of hk̄ki

#
for # ! 1 di�ers less than 1%

between both methods.
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Tensor-network simulation of the strong-coupling * (#) model Pascal Milde

Figure 5: Dependence of hk̄ki on the HOTRG bond dimension ⇡ for a three-dimensional 163 lattice with
< = 0.1 and # = 9, plotted as a function of 1/⇡. The solid line gives the Metropolis result with its error
band.
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Figure 6: Dependence of hk̄ki on the bond dimension ⇡ for a four-dimensional 164 lattice with # = 9
and < = 0.1, plotted as a function of 1/⇡. We compare the results obtained with the HT approximation to
HOTRG (blue dots), the standard HOTRG (red squares) and the Metropolis method (solid line). For large
⇡ the HT approximation is consistent with the HOTRG results. Although the tensor results are close to the
MC data, they are clearly not yet converged for these ⇡ values.

4.3 Four dimensions

A similar analysis can be carried out for four dimensions, except for the comparison with the
exact results. In four dimensions, the standard HOTRG algorithm has a memory cost of ⇡8 and
complexity of ⇡15, and therefore, the accessible range of ⇡ is very limited. To extend this range, we
use the HT-HOTRG method, where the tensor is approximated by the factorization (5) throughout
the simulation. In Fig. 6 we compare the results obtained with HT-HOTRG, standard HOTRG and
Metropolis MC on a 164 lattice for # = 9 and < = 0.1. Even though we find a qualitative agreement
between the tensor and the MC results, the former have not yet converged for the ⇡ values used in
our simulations. We also observe that the results obtained with the HT approximation agree with
the standard HOTRG, when ⇡ is taken large enough. Therefore, we use HT-HOTRG with ⇡ = 20,
as it has the same accuracy as standard HOTRG with ⇡ = 9, but only requires about 0.5% of the
computation time.

We also investigate dynamical chiral symmetry breaking in four dimensions. There are again

6

✔ HOTRGを使うが局所テンソルを以下で近似し, 計算コストは𝑶 𝑫𝟏𝟓 → 𝑶 𝑫𝟖

𝑇01230!1!2!3! ≈ ∑𝐴00!4𝐵11!5𝐶22!!𝐷33!6𝐸457𝐹!67

カイラル凝縮

𝑚 = 0.1
𝑁 = 9
𝑉 = 16=

𝑉 = 16=
𝑚 = 0.1

𝐷 = 20

✔ 𝑵 → ∞でのカイラル凝縮を見積もった
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有限密度NJL模型 (TRG)
✔ 有限密度QCDの低エネルギー有効理論. Staggeredフェルミオンによる定式化に基づく

SA-Kuramashi-Yamashita-Yoshimura,JHEP01(2021)121
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QED (TTN)
✔ QLMに基づく正則化. 線形/Coulombポテンシャルを捉えられている

Magnifico-Felser-Silvi-Montangero,Nat.Commun.12(2021)3600

Coulomb

Confining

“a single simulation for the maximum size that we reached, an 8⨉8⨉8 lattice, can last up to five 
weeks until final convergence, depending on the different regimes of the model and the control 
parameters of the algorithms”

of the factor !1ð Þδk1 ;2þδk2 ;2þδk3 ;2 allows us to satisfy the anticommutation relations of
the fermionic representation recovering the correct signs of Eq. (11). The
occupation numbers ϕ and kj are not independent due to the constraint imposed by
Gauss’s law

Ĝx

k5
k1 ϕ k4

k2

!!!!!!!

+k6

k3

¼ 0: ð16Þ

This equation, in the new language of matter fermions and rishons, reads

ϕþ ∑
6

j¼1
kj ¼ 6þ

1! ð!1Þx

2
: ð17Þ

where the factor 6 is indeed the coordination number of the cubic lattice. Thus, the
gauge-invariant configurations of the local basis are obtained by applying this
constraint, effectively reducing the “dressed-site” (matter and 6 rishon modes)
dimension from 2 × 36= 1458 to merely 267. We encode these states as building
blocks of our computational representation for the TN algorithms. In Fig. 6, we
show some examples of gauge-invariant configurations for even and odd sites.

The construction of the gauge-invariant local sites is particularly advantageous
for our numerical purposes: in fact, it is now possible to express all the terms in the
Hamiltonian of Eqs. (1a)–(1c) of the main text as the product of completely local
operators that commute on different sites. Let us consider the kinetic term of the
Hamiltonian and apply the representation of the gauge field in terms of the 3-
hardcore fermionic modes

ψ̂yxÛx;μψ̂xþμ ¼ ψ̂yx η̂x;μη̂
y
xþμ;!μψ̂xþμ

¼ η̂yx;μψ̂x

" #y
η̂yxþμ;!μψ̂xþμ

" #

¼MðαÞy
x Mα0

xþμ

ð18Þ

where the indices α and α0 select the right operators depending on the different
directions in which the hopping process takes place. The operators Mα

x;μ are
genuinely local (i.e., they commute with operators acting elsewhere) as they are
always quadratic in the fermionic operators (ψ and/or η). The same argument

applies to the magnetic (plaquette) terms in the Hamiltonian

&̂μx ;μy
¼ Ûx;μx

Ûxþμx ;μy
Û
y
xþμy ;μx

Û
y
x;μy

¼

¼ η̂x;μx η̂
y
xþμx ;!μx

η̂xþμx ;μy
η̂yxþμxþμy ;!μy

´ η̂xþμy ;μx
η̂yxþμxþμy ;!μx

" #y
η̂x;μy η̂

y
xþμy ;!μy

" #y

¼ ! η̂yx;μy η̂x;μx

" #
η̂yxþμx ;!μx

η̂xþμx ;μy

" #

´ η̂yxþμxþμy ;!μy
η̂xþμxþμy ;!μx

" #
η̂yxþμy ;μx

η̂xþμy ;!μy

" #

& ! CðαÞ
x Cðα0Þ

xþμx
Cðα00 Þ
xþμxþμy

Cðα000Þ
xþμy

;

ð19Þ

where the indices α, α0 , α″, α‴ depend on the plane of the plaquette (in this case
x–y) and the links involved in the loop. The operators Cα

x are genuinely local and
act on the four sites at the corners of the plaquette. The decomposition is the same
for the other plaquettes in the planes x–z and y–z. The present construction ensures
that they can be treated as spin (or bosonic) operators97,98, so we can exploit
standard TN algorithms, without the need of explicitly implementing the fermionic
parity at each site102–104.

The mass term and the electric field energy in the Hamiltonian of Eqs. (1a)–(1c)
of the main text are diagonal in the gauge-invariant basis with the rishon
representation and so it is trivial to express them as local operators. These
operators include the local chemical potential terms, which we use to pin charges in
order to study confinement properties105–107. In conclusion, all the operators we
employ in the TTN algorithms (see the “Methods” subsection “Tensor Networks”)
are genuinely local. In order to get an idea of the numerical complexity, we
emphasize that the dimension of these matrices acting on the local gauge-invariant
basis is 267 × 267.

Tensor networks. In this section, we present the main concepts of TNs with a
particular focus on the TTN ansatz that we exploit in this work108. For a detailed
and exhaustive description of the subject, please see the technical reviews and
textbooks21,109,110.

Let us consider a generic quantum system composed by N lattice sites, each of
which described by a local Hilbert space Hk of finite dimension d and equipped
with a local basis ij >k

$ %
1≤ i≤ d . The whole Hilbert space of the system will be

generated by the tensor product of the local Hilbert spaces, that is,
H ¼ H1 'H2 ' ( ( (HN , with a resulting dimension equal to dN. Thus, a generic
pure quantum state of the system jψi can be expressed as a linear combination of
the basis elements of H, i.e.,

ψ
!! &

¼ ∑
d

i1 ;:::;iN¼1
ci1 ;:::;iN i1

!! &
1 ' i2

!! &
2 ' :::' iN

!! &
N : ð20Þ

Fig. 7 TTN ansazts. TTN representations for a 1D lattice and b 2D square lattice. Green circles indicate the sites of the lattice connected to the physical
indices of the tree, whereas the yellow circles are the tensors making up the TTN. In c, we showed our generalization to the 3D cubic lattice that we use for
the numerical simulations of the LGT. The different colors of the bond indices are just for better visualization of the tree structure.
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In principle, the coefficients ci1 ;:::;iN are dN complex numbers. As a consequence,
this exact representation of the quantum state is completely inefficient from a
computational point of view, since it scales exponentially with the system size N. In
other words, the amount of information that we would need to store in memory for
a computational representation of the generic quantum state of the system is
exponentially large in the number of degrees of freedom.

However, if we are concerned with local Hamiltonians, which means that a
lattice site interacts only with a finite set of neighboring sites and not with all sites
of the lattice, it is possible to exploit rigorous results on the scaling of entanglement
under a bipartition (area law)111,112 in order to obtain an efficient representation of
the states in the low-energy sectors of such Hamiltonians, e.g., ground-states and
first excited states. TN provide a natural language for this representation113,114 by
decomposing the complete rank-N tensor ci1 ;:::;iN in Eq. (20) into a network of
smaller-rank local tensors interconnected with auxiliary indices (bond indices). If
we control the dimension of the bond indices with a parameter χ, called the bond
dimension, the number of coefficients in the TN is of the order O(poly(N)poly(χ)),
allowing an efficient representation of the information encoded in the quantum
state. Furthermore, the bond dimension χ is a quantitative estimate of the number
of quantum correlations and entanglement present in the TN. In fact, by varying χ,
TNs interpolate between a product state (χ= 1) and the exact, inefficient,
representation of the considered quantum state (χ ≈ dN).

Matrix product states (MPS) for 1D systems115–117, projected entangled pair
state (PEPS) for 2D and 3D systems114,118,119, multiscale entanglement
renormalization ansatz120,121 and TTN, that can be defined in any
dimension,108,122,123 are all important examples of efficient representations based
on TNs.

MPS algorithms, such as the density matrix renormalization group124,
represent the state-of-the-art technique for the numerical simulation of many-
body systems in 1D. MPS satisfy area law and are extremely powerful since they
allow to compute scalar products between two wave functions and local
observables in an exact and efficient way. This property does not hold true for
higher-dimensional generalizations, such as PEPS, and the development of TN
algorithms, for accurate and efficiently scalable computations, is at the center of
current research efforts.

In particular, one of the main problems is related to the choice of the TN
geometry for simulating higher-dimensional systems. PEPS intuitively reproduces
the structure of the lattice with one tensor for each physical site and the bond
indices directly follow the lattice grid. The resulting TN follows the area-law of
entanglement but it contains loops, making the contractions for computing
expectation values exponentially hard125. Furthermore, the computational cost for
performing the variational optimization of PEPS, as for instance in the ground state
searching, scales as O(χ10) as a function of the bond dimension. This severely limits
the possibility of reaching high values of χ, especially for large system sizes (typical
values are χ ≈10 for spin systems). For our purpose of simulating LGT in three-
spatial dimensions, this represents a crucial problem since the local dimension of
our model is extremely high, i.e., d= 267, and so, it becomes necessary to be able to
handle high values of χ in order to reach the numerical convergence.

Alternative ansätze for simulating quantum many-body systems are the TTNs,
which decompose the wave function into a network of tensors without loops,
allowing efficient contraction algorithms with a polynomial scaling as a function of
the system size. In Fig. 7, we show the typical TTN ansazts for 1D and 2D systems
and our generalization to the 3D lattice. TTNs offer more tractable computational
costs since the complete contraction and the variational optimization algorithms
scale as O(χ4), making it easier to reach high values of the bond dimension (up to
χ ≈1000). The price to pay for using the loopless structure is related to the area law
that TTNs may not explicitly reproduce in dimensions higher than one126.
Nevertheless, we use the TTN ansatz in a variational optimization, so we can
improve the precision by using increasing values of χ, providing in this way a
careful control over the convergence of our numerical results.

Ground state computation of our LGT model employs the TTN algorithm for
variational ground state search, including the exploitation of Abelian symmetries
and the Krylov subspace expansion110. The algorithm is implemented to conserve
the total charge through the definition of global U(1) symmetry sectors encoded in
the TTN. Thus, we can easily access finite charge–density regimes, with an
arbitrary imbalance between charges and anticharges.

Our TTN for the 3D lattice is composed entirely of tensors with three links (this
structure is usually called binary tree). The construction of the TTN starts from
merging the physical indices at the bottom, which represent two neighboring lattice
sites along the x-direction, into one tensor. Then, these tensors are connected along
the y-direction through new tensors in an upper layer. The tensors in this layer are
then connected along the z-direction through a new layer of tensors. Thus, this
procedure is iteratively repeated by properly setting the connections along with the
three spatial directions in the upper layers of the tree. At the beginning of the
simulation, we randomly initialize all the tensors in the network and the
distribution of the global symmetry sectors. During the variational optimization
stage, in order to improve the convergence, we perform the single-tensor
optimization with subspace-expansion technique, i.e., allowing a dynamical
increase of the local bond dimension and adapting the symmetry sectors110. This
scheme has a global computational cost of the order O(χ4). The single tensor
optimization is implemented in three steps: (i) the effective Hamiltonian Heff for
the tensor is obtained by contracting the complete Hamiltonian of the system with
all the remaining tensors of the tree; (ii) the local eigenvalue problem for Heff is
solved by using the Arnoldi method of the ARPACK library; (iii) the tensor is
updated by the eigenvector of Heff corresponding to the lowest eigenvalue. This
procedure is iterated by sweeping through the TTN from the lowest to the highest
layers, gradually reducing the energy expectation value. After completing the whole
sweep, the procedure is iterated again and again, until the desired convergence in
the energy is reached. The precision of the Arnoldi algorithm is increased in each
sweep, for gaining more accuracy in solving the local eigenvalue problems as we
approach the final convergence.

TTN computations presented in this work are extremely challenging due to the
complexity of LGTs in the three-dimensional scenario. They were performed on
different HPC-clusters (CloudVeneto, CINECA, BwUniCluster, and ATOS Bull): a
single simulation for the maximum size that we reached, an 8 × 8 × 8 lattice, can
last up to five weeks until final convergence, depending on the different regimes of
the model and the control parameters of the algorithms.

Numerical convergence. With our numerical simulations, we characterize the
properties of the ground state of the system as a function of the parameters in the
Hamiltonian of Eqs. (1a)–(1c) of the main text. We fix the energy scale by setting
the hopping coefficient t= 1 and we access several regimes of the mass m, the
electric ge and the magnetic coupling gm. We consider simple cubic lattices L × L ×
L with the linear size L being a binary power; in particular, we simulate the case
with L= 2, 4, 8, that is, up to 512 lattice sites.

As explained in the “Methods” subsection “Fermionic compact representation
of local gauge-invariant site”, in order to obtain the right representation of the
electric field operators, we have to enforce the extra link symmetry constraint
L̂x;μ ¼ 2 at every pair of neighboring sites. For this reason, we include in the
Hamiltonian additional terms that energetically penalize all the states with a
number of hardcore fermions per link different from two, namely

Ĥpen ¼ ν ∑
x;μ

1" δ̂2;L̂x;μ

! "
ð21Þ

where ν > 0 is the penalty coefficient and δ̂2;L̂x;μ are the projectors on the states that

satisfy the extra link constraint. In this way, the penalty terms vanish when the link
symmetry is satisfied and raise the energy of the states violating the constraint. In
principle, the link symmetry is rigorously satisfied for ν→∞. At the numerical

Fig. 8 Numerical convergence. a Driven optimization (in three steps: linear, quadratic, constant) of the penalty coefficient ν (red) and behavior of the
energy (blue) as a function of the iterations for an exemplifying simulation. The energy is reported as the difference with the lowest final energy that we
reach. b Driven optimization of the penalty coefficient ν (red) and global error δL (green) with respect to the link symmetry during the optimization steps.
c Scaling of the energy density as a function of the inverse of the bond dimension 1/χ. The bond dimension χ is in the range 100;450½ &.
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4次元系での応用状況をまとめると
✔ TRGとTTNの2手法が4次元系に応用されている

✔ 4次元系のTN計算では今のところATRGが最も有力

✔ 相転移点の決定は可能. 臨界指数の決定はまだ

Emonts-Zohar,PRD108(2023)014514
✔ まだ応用例はないが4次元系に対するGGPEPSの構成については議論が進んでいる

✔ HPCの利用を前提としたアルゴリズムの実装も重要
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Yamashita-Sakurai,CPC278(2022)108423, SA-Kuramashi-Yamashita-Yoshimura,PoS(LATTICE2019)138



全体的なまとめと展望
✔ HEP分野の高次元格子理論に対しては複数のTN手法(TRG, TTN, PEPS, GGPEPS)による
数値計算が報告されており, ゲージ理論への応用も進んでいる

✔ 有限ボンド次元効果に関する理解 Talk by 上⽥篤さん
Tagliacozzo-Oliveira-Iblisdir-Latorre,PRB78(2008)024410 
Pollmann-Mukerjee-Turner-Moore,PRL102(2009)255701

Huang-Chan-Kao-Chen,PRB107(2023)205123

✔ ゲージ理論へのTN法の応用を考える場合には確率論的手法との連携も要検討
Talk by ⼤⽊さん
Talk by 藤堂さん

✔ 演算子形式と経路積分形式のTN計算は一見様相が異なるが, ゲージ自由度の正則化をいか
に施すかという問題は共通であり, 相互発展の余地がありそう
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✔ 格子フェルミオン系のTN表現 SA,PRD108(2023)034514
Yosprakob-Nishimura-Okunishi,arXiv:230901422[hep-lat]


