

Based on Hayata, YH, Phys. Rev. D 103 (2021) 9, 094502, 2305.05950, 2306.12324 Hayata, YH, Kikuchi Phys. Rev. D 104 (2021) 7, 074518 Hayata, YH, Nishimura, 2311.xxxxx

日最将 共同研究者:早田智也(慶応) 西村健太郎(KEK)

$i\partial_t |\Psi\rangle = H_{\rm QCD} |\Psi\rangle$

を解きたい!

QCDの大きな未理解問題

QCDの 多体系の 実時間発展

高密度QCD

lemperature sQGP **Critical**

high-energy heavy ion collisions

どうやってクォークグルーオンプラズマが生成されるか?

BNLのホームページより

中性子星の内部では どんな状態が 実現しているか?

符号問題: importance samplingに 基づいた第一原理計算の困難

$\langle O \rangle = \mathscr{D}A \det(D+m)e^{iS}O$

実時間、有限密度の問題では複素 なため確率分布とみなせない

小さい系なら直接 ミュレーション可能 テンソルネットワークを 使った手法 量子コピュータでの シミュレーション

ハミルトニアン形式を使ったアプローチ Schrodinger方程式を直接解いて符号問題回避

TPS, PEPS

MPS ••••••

Link変数が連続変数 ⇒自由度無限大 (正則化が必要)

ゲージ対称性に起因した $\dim \mathcal{H}_{phys} \ll \dim \mathcal{H}_{total}$ 大きい余分な自由度 Gauss law constraintを解く必要性

ハミルトニアン形式を使ったアプローチ ゲージ理論での困難

$U \in SU(N)$ ゲージ対称性と相性の 良い近似法は? 連続空間

正準交換関係

ハミルトニアン

Gauss law拘束条件 $(D \cdot E)^i | \Psi_{phys} \rangle = 0$

SU(N)ゲージ理論($A_0 = 0$ ゲージ)

 $[A_n^i(x), E_{mj}(x')] = i\delta_{nm}\delta_j^i\delta(x - x')$ ゲージ場 電場

 $H = \int d^{3}x \left(\frac{g^{2}}{2}E^{2}(x) + \frac{1}{2g^{2}}B^{2}(x)\right)$ 磁場 $B_l^i = \frac{1}{2} \epsilon_{lnm} (\partial_m A_n^i - \partial_m A_n^i + f_{jk}^i A_m^j A_n^k)$

Kogut-Susskind Hamiltonian 形式 Kogut, Susskind, Phys. Rev. D 11, 395 (1975)

 $L_i(e) と R_i(e) は、独立でない$

$e^{i \int A} \rightarrow U(e)$:辺e上のリンク変数 $\in SU(N)$ $L_i(e), R_i(e)$: 辺の始点, 終点上の電場 $\in su(N)$

$[A_n^i(x), E_{mj}(x')]$ = $i\delta_{nm}\delta_j^i\delta(x - x')$

 $[R_i(e), U(e')] = U(e)T_i\delta_{e,e'}$ $[L_i(e), U(e')] = T_i U(e) \delta_{e,e'}$ $[L_{i}(e), L_{j}(e')] = -if_{ij}^{k}L_{k}(e)\delta_{e,e'}$ $[R_{i}(e), R_{j}(e')] = if_{ij}^{k}R_{k}(e)\delta_{e,e'}$ ガウスの拘束条件 $(D \cdot E)^{l} | \Psi_{phys} \rangle = 0$ $\sum_{e \in C_1 | s(e) = v} R_i(e) - \sum_{e \in C_1 | t(e) = v} L_i(e) \left| \Psi_{\text{phys}} \right\rangle = 0$ C1:辺の集合, s,t:辺の始点, 終点を取る関数

$e \in C_1$

$H = \frac{1}{2} \sum_{e \in C} (E(e))^2 - \frac{K}{2} \sum_{e \in C} (\operatorname{tr} U(f) + \operatorname{tr} U^{\dagger}(f))$ $f \in C_2$ C2:面の集合

$U(f) := U(e_4)U(e_3)U(e_2)U(e_1)$

●基底構成する

スピンネットワークへの演算子の作用を計算 ●ゲージ対称性を尊重した有限自由度近似

●Gauss law 拘束条件を解いて物理状態の基底を構成する ⇒SU(2)の場合はスピンネットワーク

2種類の基底:磁気的基底, 電気的基底

磁気的基底(Wilson lineの固有状態) $[U_a]_n^m |g\rangle = [\rho_a]_n^m (g) |g\rangle \qquad g \in \mathrm{SU}(2)$ 表現*a*のWilson line 表現行列

電場の固有状態 $R_i^2(e) | j, m, n \rangle = C_2(j) | j, m, n \rangle$ Casimir $C_2(j) = j(j+1)$ $R_3(e) | j, m, n \rangle = n | j, m, n \rangle$ $L_3(e) | j, m, n \rangle = m | j, m, n \rangle$

mjn

 $|j,m,n\rangle$

状態はWilson lineで生成できる

 $\sqrt{d_a}[U_a]_{n_a}^{m_a}|0,0,0\rangle = |j_a,m_a,n_a\rangle$

$d_a = 2j_a + 1$ 量子次元

グラフィカル表記: $a \leftrightarrow \sqrt{d_a} [U_a]_{n_a}^{m_a} \leftrightarrow |j_a, m_a, n_a\rangle$ 演算子 状態

物理状態スピンネットワーク Gaussの拘束条件:各頂点でSU(2)不変

 $\sum_{n_{a},n_{b},m_{c}} \frac{1}{\sqrt{d_{c}}} \langle j_{a}n_{a} j_{b}n_{b} | j_{c}m_{c} \rangle | j_{a}, m_{a}, n_{a} \rangle | j_{b}, m_{b}, n_{b} \rangle | j_{c}, m_{c}, n_{c} \rangle$ **Clebsch-Gordan(KX**)

物理状態:3点頂点を持つスピンネットワーク 辺に角運動量のラベル 各頂点は三角不等式を満たす 状態はWilson lineで生成可 ⇒Wilson lineのネットワーク

物理量: 電場とWilson lineで構成 状態: Wilson lineで生成 Wilson lineの合成規則がわかると 演算子の状態への作用が決まる $[U_a]_{n_a}^{m_a}[U_b]_{n_b}^{m_b} = \sum \langle j_a m_a j_b m_b | j_c, m_c \rangle \langle j_c, n_c | j_a n_a j_b n_b \rangle [U_c]_{n_c}^{m_c}$

 j_c, m_c, n_c

 $a \qquad b = \sum_{c} \sqrt{\frac{d_c}{d_a d_b}} \qquad a \qquad b \qquad c \qquad a \qquad b$

 $a \qquad b = \sum_{c} \sqrt{\frac{d_c}{d_a d_b}} \qquad a \qquad b$ $= \sum \left[F_d^{abc} \right]_{ef}$

一方の合成規則

園会ししている × b = $\sum N_{ab}^c C$ $N_{ab}^c = \delta_{abc} = \begin{cases} 1 & |j_a - j_b| \le j_c \le j_a + j_b, j_a + j_b + j_c \in \mathbb{Z} \\ 0 & \mathcal{E}O(\mathbf{b}) \end{cases}$

Wigner 6-j symbol $[F_{d}^{abc}]_{ef} = (-1)^{j_a + j_b + j_c + j_d} \sqrt{d_e d_f} \begin{cases} j_a & j_b & j_e \\ j_c & j_d & j_f \end{cases}$

 $b = \delta_c^{c'} \int \frac{d_a d_b}{d}$

ネットワークへのWilson loopの作用

 C_4 b_3 C_3

別の補助リンクの入れ方

ネットワークの合成ルールにより 行列要素が補助リンクの入れ方によらない

合成ルールを満たすように表現の最大値を

整数kでカットオフ $j \leq k/2$ →量子群 SU(2)_k

e.g., $C_2(j) = [j][j+1]$

表現のラベルによる正則化

実用上は,(半)整数 $n \mathbf{c}[n] = rac{\sin rac{\pi}{k+2}n}{\sin rac{\pi}{k+2}}$ に置き換えればOK

ネットワークの合成ルールはFusion圏

スピンネットワークは非局所的で使いにくい

状態に三角不等式を課さない 代わりにハミルトニアンにペナルティ項を入れる

$\delta_{abc} = \begin{cases} 1 & |j_a - j_b| \le j_c \le j_a + j_b, j_a + j_b + j_c \in \mathbb{Z}$ かつ $j_a + j_b, j_a + j_b + j_c \le k/2 \\ 0 \quad その他$

とし $2|j_a, j_b, j_c\rangle = \delta_{abc}|j_a, j_b, j_c\rangle$ とする

辺に自由度: $j = 0, 1/2, \dots, k/2$ $e \in C_1$ 状態への作用 $E_i^2 \bullet a = C_2(a) \bullet a$ trU a_1 × a_3 = $\prod \sum [F_{b_i}^{c_i a_{i-1}\frac{1}{2}}]_{a_i b_{i-1}}$

 C_3

 a_2

cf. Levin, Wen Phys. Rev. B 71 (2005) 045110

$SU(3)_k$ Yang-Mills理論 ひとつの違いはmultiplicity N_{ab}^{c}

例: $SU(2)_k$ $3\otimes 3=1\oplus 3\oplus 5$ $N_{33}^a = 0 \text{ or } 1$

状態を指定するラベルが SU(3)_kの場合には増える

$SU(3)_k$ $8\otimes 8=1\oplus 8\oplus 8\oplus 10\oplus 10\oplus 27$ $\rightarrow N_{88}^8 = 2$

 $b = \sum_{c,\mu} \sqrt{\frac{d_c}{d_a d_b}}$ a

SU(3) のネットワークの代数

a'

+無矛盾条件

$SU(3)_k$ のF symbolの一般的な具体形は知られていないと思う.

C

状態への作用 $E_i^2 \bullet a = C_2(a) \bullet a$

 $f \in C_2$ $v \in C_0$ set of faces set of vertices

(2+1)次元SU(3)_kゲージ理論 Hayata, YH, JHEP 09, 123 (2023)

(1+1)次元 QCDの有限密度計算

(3+1)次元 Yang-Mills理論の熱化 Hayata, YH, Phys. Rev. D 103, 094502 (2021)

Hayata, YH, Nishimura, 2311.xxxxx

$(2+1)次元SU(3)_k - ジ理論$ 平均場近似の元での閉じ込め非閉じ込め相転移

Dusuel, Vidal, Phys. Rev. B 92 (2015) 12, 125150, Zache, González-Cuadra, Zoller, 2304.02527, Hayata, YH, 2306.12324

$f \in \mathcal{F} \ a_f$ グラフィカルな表現 $\operatorname{tr} U_{a_f}(f) \left| 0 \right\rangle =$ $f \in \mathcal{F}$

エネルギーの期待値を最小化するように波動関数を選ぶ 開放端境界条件,無限体積 $E = \min_{\psi} \left\langle \Psi \right| H \left| \Psi \right\rangle$

 $|\Psi\rangle = \int \psi(a_f) \operatorname{tr} U_{a_f}(f) |0\rangle$

物理量は波動関数を与えると解析的

エネルギー密度 $h = \frac{1}{V} \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)\rangle$

Wilson loop $\langle \operatorname{tr} U_d(\partial S) \rangle = d_d \exp(-|S|\sigma_d)$ 弦の張力 $\sigma_d \coloneqq \ln \frac{1}{\sum_{a,b} N^a_{db} \psi^*(a) \psi(b)}$

Hayata, YH, JHEP 09, 123 (2023)

$$|\psi(b)|^2 |\psi(b)|^2 - \frac{K}{2} \sum_{a,b} \psi^*(a) \left(N^a_{(1,0)b} + N^a_{(0,1)b} \right) \psi^*(b) |\psi(b)|^2$$

 d_d

数值計算結果

Numerical results

相転移が起きる

トポロジカル相

String-net condensation: $\psi(a) \sim d_a$ 弦の張力が消えた状態

Monte-Carlo計算との比較

プラケット

大きいkでよく一致

弦の張力

(1+1)次元 QCDの有限密度計算

QCDの有限密度計算

QCDの有限密度状態方程式はどのようなものか? バリオン物質からクォーク物質へ変化するときの クォークの分布関数はどの様に変化するか? どのような相が実現するか?非一様相?

(1+1)次元QCDの有限密度計算

(1+1)次元の特徴

 ゲージ場がdynamicalではない ■ユニタリ変換でゲージ場を消去可能

•Open Boundary Condition(OBC)では有限自由度

$$J = \frac{ag_0}{2}, w = \frac{1}{2g_0a}, m =$$

(無次元化した)QCD2 ハミルトニアン

m_0/g_0 $g_0 = 1$ 単位系を使う

$\chi(n) + \chi^{\dagger}(n)U^{\dagger}(n)\chi(n+1) \bigg)$ ノブ項

ユータリ変換でしを消去

Sala, Shi, Kühn, Bañuls, Demler, Cirac, Phys. Rev. D 98, 034505 (2018) Atas, Zhang, Lewis, Jahanpour, Haase, Muschik, Nature Commun. 12, 6499 (2021)

 $\Theta_{\chi}(n)\Theta^{\dagger} := U(n-1)U(n-2)\cdots U(1)\chi(n)$ $\Theta H \Theta^{\dagger} = J \sum_{i=1}^{N-1} \left(\sum_{i=1}^{n} \chi^{\dagger}(m) T_{i} \chi(m) \right)^{2} \quad \mathbf{ers}$ n=1 m=1 $+w\sum^{N-1}\left(\chi^{\dagger}(n+1)\chi(n)+\chi^{\dagger}(n)\chi(n+1)\right)$ ホッピング項 *n*=1 N +m $(-1)^n \chi^{\dagger}(n)\chi(n)$ 質量項 n=1

・行列積状態を使う $|\psi\rangle = \sum |n_1\rangle \cdots |n_N\rangle \operatorname{tr} M_1^{n_1} \cdots M_N^{n_N}$ $\{n_i\}$ $[M_{i}^{n_{i}}]_{ii}$: $D \times D$ 行列

密度行列くりこみ群の手法で最適化 $E = \min \langle \psi | H | \psi \rangle$

変分波動関数として

iTensorのライブラリを使う

パリオンサイズ~1

圧力

カラー SU(2), 1フレーバ, 有限密度 $J = 1/8 \ w = 2 \ V = 40 \ \dim \mathcal{H} = 2^{320}$ エネルギ

カラー SU(2), 1 フレーバ, 有限密度 $J = 1/8 \ w = 2 \ V = 40 \ \dim \mathcal{H} = 2^{320}$ 化学ポテンシャル 音速

 $\Delta \Sigma = \langle \bar{\psi}\psi(x) \rangle - \langle \bar{\psi}\psi(x) \rangle_{\mu=0}$

振幅が最大の端数

ハドロン描像 ハドロン間の相互作用が斥力なら

クォーク描像 クォーク間の相互作用が引力なら フェルミ面は不安定 ⇒密度波 $k = 2p_F = 2\pi n_R$

 $n_R \sim 0.2$ でバリオンからクォークへ転移

•氏密度 フェルミ面なし 日密度

フェルミ海 +BCS的ペアリング

SU(3) QCD with $N_f = 1$

圧力

カラー SU(3), 1フレーバ, 有限密度 $J = 1/8 \ w = 2 \ V = 12 \ \dim \mathcal{H} = 2^{144}$ エネルギ

カラー SU(3), 1 フレーバ, 有限密度 $J = 1/8 w = 2 V = 12 \dim \mathcal{H} = 2^{144}$ 合ポテンシャル 音速

 $\Delta \Sigma = \langle \bar{\psi}\psi(x) \rangle - \langle \bar{\psi}\psi(x) \rangle_{\mu=0}$

何天历日 $J = 1/8 \ w = 2 \ V = 12 \ \dim \mathcal{H} = 2^{144}$

振動の波数依存性

クォーク分布関数

 $n_B = 0.3 < らいでバリオンに転移?$

(3+1)次元 Yang-Mills理論の熱化

1つの立方体 •8個の頂点 •6個の面 •12個のリンク

$t < 0 | Vac \rangle_{K=0}$

 $t \ge 0 | \Psi(t) \rangle = e^{-iHt} | Vac \rangle_{K=0}$

初期状態を決めるとエネルギーが決まる $E = \langle H \rangle = \langle \Psi(t) | H | \Psi(t) \rangle$

$E = \langle H \rangle_{eq} := tr \rho_{eq} H$ with $\rho_{eq} = \frac{1}{2}$

温度とカノニカルアンサンブル

(時間に依存しない) エネルギーを決めるとそのエネルギーを 期待値として再現するカノニカル分布が 定義できる $\rho -\beta H$

tre-\$H

 $j_{\text{max}} = 4 を用いる: dim \mathcal{H} = 87,426,119$

 $E - E_{\rm vac}$

温度のK依存性

第一励起エネルギー $\Delta E_1: E_1 - E_0$ 典型的なエネルギースケール $\beta \Delta E_1 > 1$ 低温 $\beta \Delta E_1 < 1$ 高温 低温

長時間平均 vsカノニカルアンサンブル

K>5について差は1%未満

Wilsonループの期待値 強結合(低温T)

Wilsonループの期待値 弱結合(高温T)

定常状態が観測された

$\langle tr U_{\Gamma}$

これらはBoltzmann時間に近い $2\pi\beta$.

Goldstein, Hara, Tasaki, New J. Phys. 17 (2015) 045002

基礎編 Kogut-Susskindのハミルトニアン形式 量子群変形をしてSpin模型にマッピング

 ・応用編

 (2+1)次元SU(3)_kゲージ理論の量子相転移
 (1+1)次元QCDの有限密度系の解析
 (3+1)次元小さい系でのYang-Mills理論の熱化

民との

SU(3)でのシミュレーション SU(3)kのF-moveの表式を知る必要がある

高次元系 ・大きい系、連続極限

量子コンピュータでシミュレーション