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応用について

量子計算の場の量子論への



This talk = applications in two directions

“Application of Quantum Computation

to Quantum Field Theory (QFT)” ??

1. practical

2. conceptual (?)

use quantum computer to simulate QFT

possible relations between gauge theory 
& quantum error correction
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etc…

Vision of practical applications



Application of Quantum Computation  
to

Quantum Field Theory (QFT)

This talk:

・Generic motivation:

simply would like to use powerful computers?

・Specific motivation:

Quantum computation is suitable for operator formalism

Liberation from infamous sign problem in Monte Carlo?



Cost of operator formalism

We have to play with huge vector space

since QFT typically has ∞-dim. Hilbert space

Technically, computers have to 

memorize huge vector & multiply huge matrices

Quantum computers do this job?

regularization needed!
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“Regularization” of Hilbert space

Hilbert space of QFT is typically ∞ dimensional

Make it finite dimensional!

・Fermion is easiest (up to doubling problem)

Putting on spatial lattice, Hilbert sp. is finite dimensional

・scalar
Hilbert sp. at each site is ∞ dimensional

・gauge field (w/ kinetic term)

no physical d.o.f. in 0+1D/1+1D (w/ open bdy. condition)

∞ dimensional Hilbert sp. in higher dimensions

(need truncation or additional regularization)



(1+1)d free Dirac fermion (continuum)

Lagrangian:

{𝛾𝜇, 𝛾𝜈} = 2𝜂𝜇𝜈

Hamiltonian:

{𝜓(𝑥), ത𝜓(𝑦)} = 𝛿(𝑥 − 𝑦)

𝐻 = ∫ 𝑑𝑥 −𝑖 ത𝜓𝛾1𝜕1𝜓 +𝑚 ത𝜓𝜓

𝜕ℒ

𝜕 𝜕𝑡𝜓
= ത𝜓

ℒ = ∫ 𝑑𝑥 𝑖 ത𝜓𝛾𝜇𝜕𝜇𝜓 −𝑚 ത𝜓𝜓



Continuum:

Lattice (w/ 𝑁 sites and spacing 𝑎):

(1+1)d free Dirac fermion (lattice)

𝐻 = ∫ 𝑑𝑥 −𝑖 ത𝜓𝛾1𝜕1𝜓 +𝑚 ത𝜓𝜓

= ∫ 𝑑𝑥 −𝑖(𝜓𝑢
†𝜕1𝜓𝑑 + 𝜓𝑑

†𝜕1𝜓𝑢) + 𝑚(𝜓𝑢
†𝜓𝑢 − 𝜓𝑑

†𝜓𝑑)

𝛾0 = 𝜎3,

𝛾1 = 𝑖𝜎2

𝜓(𝑥) =
𝜓𝑢
𝜓𝑑

𝜒𝑛
𝑎1/2

odd site

even site

[Susskind, Kogut-Susskind ’75]“Staggered fermion”



Continuum:

Lattice (w/ 𝑁 sites and spacing 𝑎):

(1+1)d free Dirac fermion (lattice)

𝐻 = ∫ 𝑑𝑥 −𝑖 ത𝜓𝛾1𝜕1𝜓 +𝑚 ത𝜓𝜓

= ∫ 𝑑𝑥 −𝑖(𝜓𝑢
†𝜕1𝜓𝑑 + 𝜓𝑑

†𝜕1𝜓𝑢) + 𝑚(𝜓𝑢
†𝜓𝑢 − 𝜓𝑑

†𝜓𝑑)

𝛾0 = 𝜎3,

𝛾1 = 𝑖𝜎2

𝜓(𝑥) =
𝜓𝑢
𝜓𝑑

𝜒𝑛
𝑎1/2

odd site

even site

[Susskind, Kogut-Susskind ’75]“Staggered fermion”

𝐻 = −
𝑖

2𝑎


𝑛=1

𝑁−1

𝜒𝑛
†𝜒𝑛+1 − 𝜒𝑛+1

† 𝜒𝑛 +𝑚

𝑛=1

𝑁

−1 𝑛 𝜒𝑛
†𝜒𝑛

{𝜒𝑚, 𝜒𝑛
†} = 𝛿mn,  {𝜒𝑚, 𝜒𝑛} = 0



Jordan-Wigner transformation

This is satisfied by the operator: [Jordan-Wigner’28]

{𝜒𝑚, 𝜒𝑛
†} = 𝛿mn,  {𝜒𝑚, 𝜒𝑛} = 0

(𝑋𝑛, 𝑌𝑛, 𝑍𝑛: 𝜎1,2,3 at site 𝑛)



Jordan-Wigner transformation

This is satisfied by the operator: [Jordan-Wigner’28]

Then the system is mapped to the spin system:

Now we can apply quantum algorithms to QFT!

{𝜒𝑚, 𝜒𝑛
†} = 𝛿mn,  {𝜒𝑚, 𝜒𝑛} = 0

(𝑋𝑛, 𝑌𝑛, 𝑍𝑛: 𝜎1,2,3 at site 𝑛)



Scalar field theory (continuum)

Π(𝐱) =
𝜕ℒ

𝜕 𝜕𝑡𝜙
= 𝜕𝑡𝜙

Lagrangian:

Hamiltonian:

ℒ =
1

2
𝜂𝜇𝜈(𝜕𝜇𝜙)(𝜕𝜈𝜙) − 𝑉(𝜙)

ℋ 𝒙 =
1

2
Π2 +

1

2
𝜕𝑖𝜙

2 + 𝑉(𝜙)

[𝜙 𝒙 ,Π(𝒚)] = 𝑖𝛿(𝑑)(𝒙 − 𝒚)



Scalar field theory (lattice)

Lattice Hamiltonian (simplest):

𝜕𝜇𝜙 𝑥 → Δ𝜇𝜙 𝑥𝑛 ≡
𝜙 𝑥𝑛+𝑎𝑒𝜇 −𝜙(𝑥𝑛)

𝑎

∫ 𝑑𝑑𝑥 → 𝑎𝑑

𝑛

,

𝐻 = 𝑎𝑑

𝑛

1

2
Πn
2 +

1

2


𝑖

Δ𝑖𝜙𝑛
2 + 𝑉(𝜙𝑛)

Continuum Hamiltonian:

𝐻 = ∫ 𝑑𝑑𝒙
1

2
Π2 +

1

2
𝜕𝑖𝜙

2 + 𝑉 𝜙

𝜙 𝒙𝒎 , Π 𝒙𝒏 = 𝑖𝛿𝒎,𝒏

technically the same as multi-particle QM



Regularization for single particle QM

𝐻 =
1

2
Ƹ𝑝2 +

𝜔2

2
ො𝑥2 + 𝑉int( ො𝑥)

Most naïve approach = truncation in harmonic osc. basis:

ො𝑎 =
𝜔

2
ො𝑥 +

𝑖

2𝜔
Ƹ𝑝 = 

𝑛=0

∞

𝑛 + 1 |𝑛⟩⟨𝑛 + 1|

regularize!



𝑛=0

Λ−2

𝑛 + 1 |𝑛⟩⟨𝑛 + 1|



Regularization for single particle QM

𝐻 =
1

2
Ƹ𝑝2 +

𝜔2

2
ො𝑥2 + 𝑉int( ො𝑥)

Most naïve approach = truncation in harmonic osc. basis:

ො𝑎 =
𝜔

2
ො𝑥 +

𝑖

2𝜔
Ƹ𝑝 = 

𝑛=0

∞

𝑛 + 1 |𝑛⟩⟨𝑛 + 1|

regularize!



𝑛=0

Λ−2

𝑛 + 1 |𝑛⟩⟨𝑛 + 1|

Then replace Ƹ𝑝 & ො𝑥 by

ො𝑥 ቚ
regularized

≡
1

2𝜔
( ො𝑎 + ො𝑎†) ቚ

regularized

Ƹ𝑝 ቚ
regularized

≡
1

𝑖

𝜔

2
(ො𝑎 − ො𝑎†) ቚ

regularized



ො𝑎 ቚ
regularized

= 

𝑛=0

Λ−2

𝑛 + 1 |𝑛⟩⟨𝑛 + 1|

We can rewrite the Fock basis in terms of qubits:

𝑛 = 𝑏𝐾−1 𝑏𝐾−2 ⋯|𝑏0⟩

𝑛 = bK−12
K−1 + bK−22

K−2 +⋯+ 𝑏02
0

𝐾 ≡ log2 Λ

(binary representation)

Regularization for single particle QM (Cont’d)



ො𝑎 ቚ
regularized

= 

𝑛=0

Λ−2

𝑛 + 1 |𝑛⟩⟨𝑛 + 1|

We can rewrite the Fock basis in terms of qubits:

𝑛 = 𝑏𝐾−1 𝑏𝐾−2 ⋯|𝑏0⟩

𝑛 = bK−12
K−1 + bK−22

K−2 +⋯+ 𝑏02
0

𝐾 ≡ log2 Λ

(binary representation)

𝑛 𝑛 + 1 =⊗ℓ=0
𝐾−1 (|𝑏ℓ

′⟩⟨𝑏ℓ|)
Then,

either one of 

Regularization for single particle QM (Cont’d)



Pure Maxwell theory (continuum)

ℒ = −
1

4
𝐹𝜇𝜈𝐹

𝜇𝜈 (𝐹𝜇𝜈= 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇)

Lagrangian:

Hamiltonian:
ℋ =

1

2
𝐸𝑖
2 +

1

2
𝐵𝑖
2

[𝐴𝑖(𝒙), 𝐸𝑗(𝒚)] = 𝑖𝛿𝑖𝑗𝛿
𝑑 (𝒙 − 𝒚)

temporal gauge 𝐴0 = 0

𝜕𝑖𝐸
𝑖 = 0

Gauss law:

𝐸𝑖 =
𝜕ℒ

𝜕 ሶ𝐴𝑖
= ሶ𝐴𝑖



Pure Maxwell theory (lattice)
Continuum:

ℋ =
1

2
𝐸𝑖
2 +

1

2
𝐵𝑖
2 𝜕𝑖𝐸

𝑖 = 0

[𝑈𝒎,𝑖 , 𝐿𝒏,𝑗] = 𝑖𝛿𝑖𝑗𝛿𝒎,𝒏

Lattice:

ℋ =
𝑎𝑑

2


𝒏,𝑖

𝐿𝒏,𝑖
2 + Re 

plaquette



𝑖<𝑗

ෑ

𝑃∈plaquette

𝑈𝑃

Gauss law:


𝑖

(𝐿𝒏+𝒆𝒊,𝑖−𝐿𝒏,𝑖 ) = 0



Ex. (1+1)d pure Maxwell theory w/ 𝜃

ℋ =
1

2
Π −

𝜃

2𝜋

2

Lattice:

ℒ =
1

2𝑔2
𝐹01
2 +

𝜃

2𝜋
𝐹01

Π =
1

g2
ሶ𝐴 +

𝜃

2𝜋
Continuum:

𝐿𝑛 ↔ −
Π 𝑥

𝑔𝐻 =
𝑔2𝑎

2


𝑛

𝐿𝑛 +
𝜃

2𝜋

2

Gauss law:
𝐿𝑛+1 − 𝐿𝑛 = 0



Ex. (1+1)d pure Maxwell theory w/ 𝜃

ℋ =
1

2
Π −

𝜃

2𝜋

2

Lattice:

ℒ =
1

2𝑔2
𝐹01
2 +

𝜃

2𝜋
𝐹01

Π =
1

g2
ሶ𝐴 +

𝜃

2𝜋
Continuum:

𝐿𝑛 ↔ −
Π 𝑥

𝑔𝐻 =
𝑔2𝑎

2


𝑛

𝐿𝑛 +
𝜃

2𝜋

2

Gauss law:
𝐿𝑛+1 − 𝐿𝑛 = 0

・open b.c.

𝐿𝑛 = 𝐿𝑛−1 = 𝐿𝑛−2 = ⋯ = 𝐿1 = (𝑏. 𝑐. )

・p.b.c.
𝐿𝑛 = 𝐿𝑛−1 = ⋯ = 𝐿1 = ⋯ = 𝐿𝑛+1 = 𝐿𝑛

one d.o.f. remains



Short summary

Hilbert space of QFT is typically ∞ dimensional

Make it finite dimensional!

・Fermion is easiest (up to doubling problem)

Putting on spatial lattice, Hilbert sp. is finite dimensional

・scalar
Hilbert sp. at each site is ∞ dimensional

・gauge field (w/ kinetic term)

no physical d.o.f. in 0+1D/1+1D (w/ open bdy. condition)

∞ dimensional Hilbert sp. in higher dimensions

(need truncation or additional regularization)

(repeated)
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Charge-𝑞 Schwinger model
Continuum:

Taking temporal gauge 𝐴0 = 0,

Physical states are constrained by Gauss law:

(Π: conjugate momentum of 𝐴1 )

0 = −𝜕1Π − 𝑞𝑔 ത𝜓𝛾0𝜓



Map of accessibility/difficulty

𝑚

𝜃

Pure
Maxwell

Monte Carlo

solvable

Mass
perturb.

We can make

prediction here



Lattice theory w/ staggered fermion
Hamiltonian:

Commutation relation:

Gauss law:



Eliminate gauge d.o.f.
1. Take open b.c. & solve Gauss law:

2. Take the gauge 𝑈𝑛 = 1

Then,

This acts on finite dimensional Hilbert space

w/ 𝐿−1 = 0



Insertion of the probe charges
① Introduce the probe charges ±𝑞𝑝:

𝑒𝑖𝑞𝑝 ∫𝐶 𝐴 𝐶
ℓ

𝑡 = +∞

𝑡 = −∞

➁ Include it to the action & switch to Hamilton formalism

𝑒𝑖𝑞𝑝 ∫𝑆,𝜕𝑆=𝐶 𝐹 local 𝜃-term w/ 𝜃 = 2𝜋𝑞𝑝!!

𝑥

+𝑞𝑝 −𝑞𝑝

ℓ

𝜃 = 𝜃0 𝜃 = 𝜃0𝜃 = 𝜃0 + 2𝜋𝑞𝑝

③ Compute the ground state energy (in the presence of the probes)



Going to spin system

This is satisfied by the operator:
[Jordan-Wigner’28]

Now the system is purely a spin system:

Qubit description of the Schwinger model !!

“Jordan-Wigner transformation”

(𝑋𝑛, 𝑌𝑛, 𝑍𝑛: 𝜎1,2,3 at site 𝑛)



Even 𝑁 or odd 𝑁?

𝜓(𝑥) =
𝜓𝑢
𝜓𝑑

𝜒𝑛
𝑎1/2

odd site

even site

x x x x x x
・・・𝜒1 𝜒2 𝜒𝑁−2 𝜒𝑁−1𝜒3𝜒0

・Usually even 𝑁 is taken (p.b.c. allows only even 𝑁)

Staggered fermion:

・Open b.c. allows both but parity is different: 𝜒𝑛 → 𝑖 −1 𝑛𝜒𝑁−𝑛−1

even 𝑁 changes

𝑛 mod 2

odd 𝑁 invariant

ത𝜓𝛾5𝜓 ∼

𝑛

−1 𝑛 (𝜒𝑛
†𝜒𝑛+1 − h. c. )ത𝜓𝜓 ∼

𝑛

−1 𝑛 𝜒𝑛
†𝜒𝑛

invariant

invariantflipped

flipped

Odd 𝑁 seems more like the continuum theory?



Constructing ground state

∃various quantum algorithms to construct vacuum:

・adiabatic state preparation 

・algorithms based on variational method

・imaginary time evolution etc…

Here, let’s apply

adiabatic state preparation 



Adiabatic state preparation

Step 1: Choose an initial Hamiltonian 𝐻0 of a simple system
whose ground state |vac0⟩ is known and unique

Step 3: 

Step 2:



Adiabatic state preparation

Step 1: Choose an initial Hamiltonian 𝐻0 of a simple system
whose ground state |vac0⟩ is known and unique

・ 𝐻𝐴 0 = 𝐻0, 𝐻𝐴 𝑇 = 𝐻target

Step 3: 

Step 2: Introduce adiabatic Hamiltonian 𝐻𝐴 𝑡 s.t.

・
𝑑𝐻𝐴

𝑑𝑡
≪ 1 for 𝑇 ≫ 1



Adiabatic state preparation

If 𝐻𝐴(𝑡) has a unique ground state w/ a finite gap for ∀𝑡,
then the ground state of 𝐻target is obtained by

Step 1: Choose an initial Hamiltonian 𝐻0 of a simple system
whose ground state |vac0⟩ is known and unique

・ 𝐻𝐴 0 = 𝐻0, 𝐻𝐴 𝑇 = 𝐻target

Step 3: Use the adiabatic theorem

vac = lim
𝑇→∞

𝒯 exp −𝑖න
0

𝑇

𝑑𝑡 𝐻𝐴 𝑡 |vac0⟩

Step 2: Introduce adiabatic Hamiltonian 𝐻𝐴 𝑡 s.t.

・
𝑑𝐻𝐴

𝑑𝑡
≪ 1 for 𝑇 ≫ 1



Demo: chiral condensate in massless case
[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]

exact result

(after continuum limit)



Screening versus Confinement

potential between 2 heavy charged particles

𝑉 𝑥 =
𝑞𝑝
2 𝑔2

2
𝑥 ?

Let’s consider

Classical picture:

+𝑞𝑝−𝑞𝑝

confinement

Coulomb law in 1+1d

too naive in the presence of dynamical fermions



Expectations from previous analyzes

[Iso-Murayama ’88, Gross-Klebanov-Matytsin-Smilga ’95 ]

Potential between probe charges ±𝑞𝑝 has been analytically computed 

・massless case:

・massive case:

𝑉 𝑥 =
𝑞𝑝
2 𝑔2

2𝜇
(1 − 𝑒−𝑞𝜇𝑥)

𝜇 ≡ 𝑔/ 𝜋

screening



Expectations from previous analyzes

[Iso-Murayama ’88, Gross-Klebanov-Matytsin-Smilga ’95 ]

Potential between probe charges ±𝑞𝑝 has been analytically computed 

・massless case:

・massive case:

𝑉 𝑥 =
𝑞𝑝
2 𝑔2

2𝜇
(1 − 𝑒−𝑞𝜇𝑥)

𝜇 ≡ 𝑔/ 𝜋

(m ≪ 𝑔, 𝑥 ≫ 1/𝑔 )

screening

screening

but sometimes negative slope!

Σ ≡ 𝑔𝑒𝛾/2𝜋3/2

= Const.

∝ 𝑥

for qp/q = 𝐙

for qp/q ≠ 𝒁

𝑉 𝑥 ∼ 𝑚𝑞Σ cos
𝜃 + 2𝜋𝑞𝑝

𝑞
− cos

𝜃

𝑞
𝑥

[cf. Misumi-Tanizaki-Unsal ’19 ]

confinement?



Let’s explore this aspect by quantum simulation!

That is, as changing the parameters…



Positive / negative string tension
[MH-Itou-Kikuchi-Tanizaki ’21]

Parameters: 𝑔 = 1, 𝑎 = 0.4,𝑁 = 25, 𝑇 = 99, 𝑞𝑝/𝑞 = −1/3,𝑚 = 0.15

Sign(tension) changes as changing 𝜃-angle!!



Energy density @ negative tension regime
[MH-Itou-Kikuchi-Tanizaki ’21]

𝑔 = 1, 𝑎 = 0.4, 𝑁 = 25, 𝑇 = 99, 𝑞𝑝/𝑞 = −1/3,𝑚 = 0.15, 𝜃0 = 2𝜋

Lower energy inside the probes!!



Towards “quantum supremacy”?

[ MH-Itou-Tanizaki ’22]

The problems in this talk involve only ground state in 1+1D

→ Tensor Network is better → able to take 𝑁 = 𝒪(100)



Towards “quantum supremacy”?

[ MH-Itou-Tanizaki ’22]

The problems in this talk involve only ground state in 1+1D

→ Tensor Network is better → able to take 𝑁 = 𝒪(100)

Tensor Network (DMRG):Adiabatic state preparation:



Towards “quantum supremacy”?

should study problems not efficiently simulated by MC & TN 

[ MH-Itou-Tanizaki ’22]

The problems in this talk involve only ground state in 1+1D

→ Tensor Network is better → able to take 𝑁 = 𝒪(100)

Tensor Network (DMRG):

・long time evolution, many pt. function, non-local op. 

・system w/ strong entanglement (matrix models?)

Adiabatic state preparation:



Other simulations of Schwinger model

・100 qubit simulation of Schwinger model
[Farrell-Illa-Ciavarella-Savage ’23]

・decay of massive vacuum under time evolution
[cf. Martinez etal.  Nature 534 (2016) 516-519]

・finite temperature [Itou-Sun-Pedersen-Yunoki, work in progress]

・quenched dynamics of 𝜃 [Nagano-Bapat-Bauer ’23]

・Schwinger model in open quantum system
[De Jong-Metcalf-Mulligan-Ploskon-Ringer-Yao ’20, de Jong-Lee-Mulligan-Ploskon-Ringer-Yao ’21,
Lee-Mulligan-Ringer-Yao ’23]

・finding energy spectrum [MH-Ghim, work in progress]
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Energy spectrum in quantum field theory
Information in energy spectrum:

・degeneracy of ground states

・energy gap between ground & 1st excited states

・distribution of excited states at low levels

phase structure, mass spectrum of particles 

Desired algorithm:

(doesn’t need ground state energy itself)

efficient computation of spectrum at low levels

For this purpose, it seems inefficient to explicitly construct 

energy eigenstates one by one and measure their energies



Algorithm: coherent imaging spectroscopy

Time dependent Hamiltonian:

𝐻 𝑡; 𝜈 = 𝐻target + 𝐵sin 𝜈𝑡 ⋅ 𝑂

𝑃(𝜈) ≔ |⟨0|𝒯𝑒−𝑖∫ 𝑑𝑡 𝐻 (𝑡;𝜈) 0 |2

We’d like to know spectrum of excited energies:

𝐻target 𝑛 = 𝐸𝑛|𝑛⟩

becomes small when 𝜈 ∼ 𝐸𝑛

Survival probability of ground state after some time:

[Senko-Smith-Richerme-Lee-Campbell-Monroe ’14]

[working in progress, MH-Ghim]



Coherent imaging spectroscopy in Ising model

Known phase diagram:

𝐻Ising = −𝐽 

𝑛=1

𝑁−1

𝑍𝑛𝑍𝑛+1 − ℎ

𝑛=1

𝑁

𝑋𝑛 −𝑚

𝑛=1

𝑁

𝑍𝑛

[working in progress, MH-Ghim]

𝐻Ising + 𝐵sin 𝜈𝑡 

𝑛=1

𝑁

𝑌𝑛

ℎ/𝐽

m/𝐽

1

critical
𝒁𝟐

Let’s consider time evolution by

unique gapped



Coherent imaging spectroscopy in Ising model (cont’d)

𝑁 = 8,𝑚/𝐽 = 0.1 （|0⟩ by adiabatic state preparation)

[working in progress, MH-Ghim]



Coherent imaging spectroscopy in Schwinger model

𝑚𝑒𝑖𝜃

parity
critical

unique gapped

Expected phase diagram for 𝑞 = 1:

−0.33?

𝐻 + 𝐵sin 𝜈𝑡 

𝑛=0

𝑁−1

−1 𝑛 (𝜒𝑛
†𝜒𝑛+1 − 𝜒𝑛+1

† 𝜒𝑛)

Let’s consider time evolution by (perturbed by “ ത𝜓𝛾5𝜓”)



Coherent imaging spectroscopy in Schwinger model (cont’d)

preliminary

(𝑁 = 13, 𝑔 = 1,𝑤 = 1, |0⟩ by adiabatic state preparation)



On higher dimensional fermion
Go to higher dimensions!

1st step: find a nice way to map 2d fermion to spins

Problem in naïve approach:

・1d
𝜒𝑛+1
† 𝜒𝑛

Jordan-Wigner
∃𝑋𝑛+1𝑋𝑛,𝑌𝑛+1𝑌𝑛, 𝑋𝑛+1𝑌𝑛, 𝑌𝑛+1𝑋𝑛

local
・2d

[MH, work in progress]



On higher dimensional fermion
Go to higher dimensions!

1st step: find a nice way to map 2d fermion to spins

Problem in naïve approach:

・1d
𝜒𝑛+1
† 𝜒𝑛

Jordan-Wigner
∃𝑋𝑛+1𝑋𝑛,𝑌𝑛+1𝑌𝑛, 𝑋𝑛+1𝑌𝑛, 𝑌𝑛+1𝑋𝑛

local
・2d (𝑁 × 𝑁 square lattice)

Relabeling site (𝑖, 𝑗) like 1d label (say 𝑛 = 𝑖 + 𝑁𝑗),

𝜒(𝑖,𝑗+1)
† 𝜒(𝑖,𝑗) = 𝜒𝐼+𝑁

† 𝜒𝐼
JW

∃𝑋𝐼+𝑁𝑋𝐼ς𝑖=𝐼+1
𝐼+𝑁−1𝑍𝑖 , etc…

non-local(cf. 𝒪(log𝑁) for Bravyi-Kitaev trans.)

[MH, work in progress]



Application of a new map to field theory
[Chen-Kapustin-Radicevic ’17]

“Gauss law” constraint at site 𝑣:

ex.) 

where 

2 Majorana fermions on face Spin op. on edge

𝑒𝐿(𝑒) 𝑅(𝑒) 𝑒
𝑒

𝑟(𝑒) 𝑟(𝑒)



Application of a new map to field theory

local

[Chen-Kapustin-Radicevic ’17]

“Gauss law” constraint at site 𝑣:

ex.) 

where 

2 Majorana fermions on face Spin op. on edge

𝑒𝐿(𝑒) 𝑅(𝑒) 𝑒
𝑒

𝑟(𝑒) 𝑟(𝑒)



Some other applications

・Inflation (scalar in curved spacetime) [Liu-Li ’20]

・Dark sector showers [Chigusa-Yamazaki ’22, Bauer-Chigusa-Yamazaki ’23]

・Scattering [Jordan-Lee-Preskiill ’17]

・Quantum group approach to Non-abelian gauge th.
[Zache-Gonzalez-Cuadra-Zoller ’23, Hayata-Hidaka ’23]

・String/M-theory [Gharibyan-Hanada-MH-Liu ’20] etc…

・quantum machine learning [Nagano-Miessen-Onodera-
Tavernelli-Tacchino-Terashi ’23]

・Chiral fermion [Hayata-Nakayama-Yamamoto ’23]

・Efficient simulation of (2+1)d U(1) gauge th.
[Kane-Grabowska-Nachman-Bauer ’22]

・Measurement-based quantum computation
[Okuda-Sukeno ’22]
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Quantum simulation is a promising approach

This talk:

relations between QEC & gauge theory

Challenges:

if ∃much computational resource in future

・to identify efficient ways to put gauge theory 
on quantum computers

・to get sufficient # of qubits to implement 
quantum error correction (QEC) 



relations between QEC & gauge theory

Motivations
(some points elaborated later)

1. ∃explicit examples

ex.) Toric code = 𝒁𝟐 lattice gauge theory [Kitaev ’97]

2.  

3. 

4. 
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relations between QEC & gauge theory

Motivations
(some points elaborated later)

1. ∃explicit examples

ex.) Toric code = 𝒁𝟐 lattice gauge theory [Kitaev ’97]

2.  Conceptual similarities: 

3.  Nature = Gauge theory & Nature = Quantum computer

4. ∃proposals on relations among QEC & concepts in HEP

ex.) Holography, Black hole, CFT, Renormalization group 

QEC =  redundant description of logical qubits

Gauge theory  =  redundant description of physical states

Gauge theory may know something on QEC?

[Spirit may be similar to Rajput-Roggaro-Wiebe ’21, Gustafson-Lamm ’23, etc...]

[Almheiri-Dong-Harlow ’14, Hayden-Preskill ’07, Dymarsky-Shapere ’20, Kawabata-Nishioka-Okuda ’22, 
Furuya-Lashkari-Moosa ’21, etc...]



What I’m doing…

QEC Gauge theory

errors unphysical op. (& excitation)

logical qubits physical states (w/ low energy)

“no error conditions” Gauss law (& min[energy])

logical op. gauge invariant op.

⋮ ⋮

ancilla for recovery additional matter

(stabilizer)

[MH, work in progress]

to make dictionary for classes of codes/gauge theories:
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Errors in classical computers
Computer interacts w/ environment error/noise

Suppose we send a bit but have “error” in probability 𝑝

one bit
0

1

0

1

𝑝
𝑝

1 − 𝑝

1 − 𝑝



Errors in classical computers
Computer interacts w/ environment error/noise

Suppose we send a bit but have “error” in probability 𝑝

one bit

A simple way to correct errors:

0

1

0

1

𝑝
𝑝

1 − 𝑝

1 − 𝑝

① Duplicate the bit (encoding): 0 → 000, 1 → 111

② Error detection & correction by “majority voting”:

001 → 000, 011 → 111, etc…

𝑃failed = 3𝑝2 1 − 𝑝 + 𝑝3 (improved if 𝑝 < 1/2)



Errors in quantum computers

・Unknown unitary operators are multiplied: 

|𝜓⟩ 𝑈|𝜓⟩
error!

(in addition to decoherence & measurement errors)

Computer interacts w/ environment error/noise

not only bit flip!



Errors in quantum computers

・have to detect errors & act “inverse of errors”
to recover w/o destroying states

・Unknown unitary operators are multiplied: 

|𝜓⟩ 𝑈|𝜓⟩
error!

(in addition to decoherence & measurement errors)

Computer interacts w/ environment error/noise

not only bit flip!

・need more qubits as in the classical case



Ex.) 3-qubit bit flip code

Encoding

𝜓 → 𝑋|𝜓⟩ w/ probability 𝑝

Bit flip error

Error detection



Ex.) 3-qubit bit flip code

𝜓 = 𝑐0 0 + 𝑐1|1⟩ 𝜓𝐸 = 𝑐0 000 + 𝑐1|111⟩

Encoding

𝜓 → 𝑋|𝜓⟩ w/ probability 𝑝

Bit flip error

Error detection



Ex.) 3-qubit bit flip code

If error occurs once, we can detect the error by knowing

𝑍1𝑍2 &  𝑍2𝑍3

(𝑍1𝑍2) 𝜓𝐸 = |𝜓𝐸⟩ ,      (𝑍2𝑍3) 𝜓𝐸 = |𝜓𝐸⟩

“No error” condition:

𝜓 = 𝑐0 0 + 𝑐1|1⟩ 𝜓𝐸 = 𝑐0 000 + 𝑐1|111⟩

Encoding

𝜓 → 𝑋|𝜓⟩ w/ probability 𝑝

Bit flip error

Error detection



Error recovery in 3-qubit bit flip code

detection recovery

As in the classical case, it fails if ∃multiple “errors”:

𝑃failed = 3𝑝2 1 − 𝑝 + 𝑝3 (improved if 𝑝 < 1/2)



Quantum Error Correction

1.Encoding

2. Error detection

3. Error recovery

𝜓 ∈ ℋ 𝜓𝐸 ∈ ℋ𝐸 (ℋ ⊂ ℋ𝐸)

𝑂𝑖 𝜓𝐸 = 𝜓𝐸 ,

Take set of operators {𝑂1, ⋯ } s.t.

𝑂𝑖 error 𝜓𝐸 ≠ (error)|𝜓𝐸⟩

Then find eigenvalues of 𝑂𝑖’s using ancillary qubits

Act “inverse of error” based on the eigenvalues
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Conceptual similarity?

description of logical qubits by more qubits

Quantum error correction:

Gauge theory:

𝑐0 0 + 𝑐1|1⟩ 𝑐0 000 + 𝑐1|111⟩

Ex.) 3-qubit bit flip code



Conceptual similarity?

description of logical qubits by more qubits

Quantum error correction:

Gauge theory:

𝛁 ⋅ 𝑬 𝑥 phys = ො𝜌(𝑥)|phys⟩

𝑐0 0 + 𝑐1|1⟩ 𝑐0 000 + 𝑐1|111⟩

Ex.) 3-qubit bit flip code

description of physical states by larger state space

“Gauss law”

Ex.) 𝑈(1) gauge theory + matters



Gauge theory on QC w/ error correction

When we don’t solve Gauss law before simulation… 

|phys⟩



Gauge theory on QC w/ error correction

When we don’t solve Gauss law before simulation… 

|phys⟩
unconstrained
(logical qubits) 



Gauge theory on QC w/ error correction

When we don’t solve Gauss law before simulation… 

|phys⟩
unconstrained
(logical qubits) 

encoded

redundancy2 ‼



Gauge theory on QC w/ error correction (cont’d)

Could we avoid the redundancy2 ? ?

Possible hints:

Nature = quantum computer

Nature = gauge theory

Gauge theory knows something on error correction?

(I don’t have a clear answer at this moment 
but I’m trying to make connections precise) 

quantum computer = gauge theory ??



Ex.) Toric code [Kitaev ’97]

Consider 2d periodic square lattice and put qubits on edges

𝐻 = −𝐽

face

ෑ

𝑒∈𝜕 face

𝑍𝑒 − 𝐽 

vertex

ෑ

𝑒|𝜕𝑒=vertex

𝑋𝑒

𝑍

𝑍

𝑍

𝑍 𝑋

𝑋

𝑋

𝑋



Ex.) Toric code [Kitaev ’97]

Consider 2d periodic square lattice and put qubits on edges

𝐻 = −𝐽

face

ෑ

𝑒∈𝜕 face

𝑍𝑒 − 𝐽 

vertex

ෑ

𝑒|𝜕𝑒=vertex

𝑋𝑒

𝑍

𝑍

𝑍

𝑍 𝑋

𝑋

𝑋

𝑋

“No error” condition = minimum energy condition:

ς𝑒∈𝜕(face)𝑍𝑒 𝜓𝐸 = 𝜓𝐸 , ς𝑒|𝜕𝑒=vertex𝑋𝑒 𝜓𝐸 = |𝜓𝐸⟩

logical op. = products of 𝑋, 𝑍 along nontrivial cycles



Ex.) Toric code (cont’d)

𝒁𝟐 gauge theory on 2d square lattice:

𝐻 = 𝑔2

𝑒

Π𝑒 − 𝐽

face

ෑ

𝑒∈𝜕 face

𝑈𝑒

(Π𝑒𝑈𝑒′Π𝑒
† = −𝛿𝑒𝑒′𝑈𝑒)

(𝑈 ∼ 𝑒𝑖𝐴, Π ∼ 𝑒𝑖𝐸 ∈ 𝒁𝟐)



Ex.) Toric code (cont’d)

ෑ

𝑒|𝜕𝑒=vertex

Π𝑒 phys = phys

𝒁𝟐 gauge theory on 2d square lattice:

𝐻 = 𝑔2

𝑒

Π𝑒 − 𝐽

face

ෑ

𝑒∈𝜕 face

𝑈𝑒

(Π𝑒𝑈𝑒′Π𝑒
† = −𝛿𝑒𝑒′𝑈𝑒)Gauss law:

(𝑈 ∼ 𝑒𝑖𝐴, Π ∼ 𝑒𝑖𝐸 ∈ 𝒁𝟐)



Ex.) Toric code (cont’d)

ෑ

𝑒|𝜕𝑒=vertex

Π𝑒 phys = phys

𝒁𝟐 gauge theory on 2d square lattice:

𝐻 = 𝑔2

𝑒

Π𝑒 − 𝐽

face

ෑ

𝑒∈𝜕 face

𝑈𝑒

(Π𝑒𝑈𝑒′Π𝑒
† = −𝛿𝑒𝑒′𝑈𝑒)Gauss law:

Ground state for 𝑔 = 0:

ς𝑒|𝜕𝑒=vertex𝑈𝑒 ground = |ground⟩

In identification (𝑈-basis)∼(computational basis),
this is the same condition as the toric code

(𝑈 ∼ 𝑒𝑖𝐴, Π ∼ 𝑒𝑖𝐸 ∈ 𝒁𝟐)



Ex.) 𝒁𝟐 lattice gauge theory on 3 sites

𝑈1, Π1 𝑈2, Π2

𝑈3, Π3

(𝑈 ∼ 𝑒𝑖𝐴, Π ∼ 𝑒𝑖𝐸 ∈ 𝒁𝟐)

𝐻 = −𝐽

𝑛=1

3

Π𝑛 + Π𝑛
†

Hamiltonian:

Gauss law:

Π𝑛Π𝑛−1
† |phys⟩ = |phys⟩

(Π𝑚𝑈𝑛Π𝑚
† = −𝛿𝑚𝑛𝑈𝑛)



Ex.) 𝒁𝟐 lattice gauge theory on 3 sites (cont’d)

𝑈1, Π1 𝑈2, Π2

𝑈3, Π3

(𝑈 ∼ 𝑒𝑖𝐴, Π ∼ 𝑒𝑖𝐸 ∈ 𝒁𝟐)

Π𝑛Π𝑛−1
† |phys⟩ = |phys⟩

Taking (computational basis) ∼ (eigenstate of Π𝑛)

𝑍1𝑍2 phys = phys ,    𝑍2𝑍3 phys = phys

“no error” condition in 3-qubit bit flip code!



Error detection & recovery

encoding

ancillary

Is there analogue of this in gauge theory?

Ancilla may be matter on sites (next slide)



𝒁𝟐 lattice gauge theory w/ a complex fermion

Π𝑚𝑈𝑛Π𝑚
† = −𝛿𝑚𝑛𝑈𝑛

𝑈1, Π1 𝑈2, Π2

𝑈3, Π3

(𝑈 ∼ 𝑒𝑖𝐴, Π ∼ 𝑒𝑖𝐸 ∈ 𝒁𝟐)

𝐻 = −𝐽

𝑛=1

3

Π𝑛 + Π𝑛
† + 𝑤

𝑛=1

3

(𝜒𝑛+1
† 𝑈𝑛𝜒𝑛 − 𝜒𝑛

†𝑈𝑛
†𝜒𝑛+1)

Hamiltonian:

Commutation relation:

Gauss law:

Π𝑛Π𝑛−1
† |phys⟩ = 𝑒𝑖𝜋𝜒𝑛

†𝜒𝑛|phys⟩

𝜒1

𝜒2

𝜒3

𝜒𝑚, 𝜒𝑛
† = 𝛿𝑚𝑛



Taking (computational basis) ∼ (eigenstate of Π𝑛)

𝑍1𝑍2 phys = 𝑒𝑖𝜋𝜒𝑛
†𝜒𝑛 phys ,    𝑍2𝑍3 phys = 𝑒𝑖𝜋𝜒𝑛

†𝜒𝑛 phys

Measuring Fermion charge = Syndrome measurement?

𝒁𝟐 lattice gauge theory w/ a complex fermion (cont’d)

𝑈1, Π1 𝑈2, Π2

𝑈3, Π3

(𝑈 ∼ 𝑒𝑖𝐴, Π ∼ 𝑒𝑖𝐸 ∈ 𝒁𝟐)

𝜒1

𝜒2

𝜒3

Π𝑛Π𝑛−1
† |phys⟩ = 𝑒𝑖𝜋𝜒𝑛

†𝜒𝑛|phys⟩



Some generalizations [MH, work in progress]

・Shor code seems to need products of plaquettes

・𝒁𝟐 theory on 1d periodic lattice w/ (2𝑛 + 1) sites 
= [2𝑛 + 1,1,2𝑛 + 1] code  

・𝒁𝟐 → 𝒁𝑵 makes qubit qudit w/ 𝑑 = 𝑁

= 6,2,3 , = 9,3,3 ,⋯

・Phase flip code is done by changing basis

・5-qubit perfect code is a special case of variant of  
toric code [Bonilla Ataides etal. ’20]



Summary

QEC Gauge theory

errors unphysical op. (& excitation)

logical qubits physical states (w/ low energy)

“no error conditions” Gauss law (& min[energy])

logical op. gauge invariant op.

⋮ ⋮

ancilla for recovery additional matter

(stabilizer)

[MH, work in progress]

“QEC/Gauge correspondence”



or

or

???

QEC

QEC

QEC

QEC

Gauge

Gauge

Gauge Gauge



Outlook 



The challenge by IBM’s 127-qubit device



The challenge by IBM’s 127-qubit device (cont’d)

Task: time evolution of Ising model on a lattice 
w/ shape = the qubit config. of the device

𝜓 𝑡 ≔ 𝑒−𝑖𝐻𝑡|00⋯0⟩

⟨𝜓 𝑡 𝒪 𝜓 𝑡 ⟩

Strategy: Suzuki-Trotter approximation
+ error mitigation by extrapolation



The challenge by IBM’s 127-qubit device (cont’d)

“Quantum supremacy”?



But…



“Quantum” Moore’s law?

Thanks!



Appendix 



Sign problem in Monte Carlo simulation
Conventional approach to simulate QFT:

②Numerically Evaluate it by (Markov Chain) Monte Carlo method  
regarding the Boltzmann factor as a probability:

& make path integral finite dimensional:

① Discretize Euclidean spacetime by lattice:



・topological term

problematic when Boltzmann factor isn’t R≧0 & is highly oscillating

much worse

In operator formalism,

sign problem is absent from the beginning

Sign problem in Monte Carlo simulation (Cont’d)

Markov Chain Monte Carlo:

probability

Examples w/ sign problem:

・real time 

・chemical potential

complex action

indefinite sign of fermion determinant

“ 𝑒𝑖𝑆(𝜙) ”

(∃various approaches within framework of path integral formalism but I’ll skip it )



Schwinger model



Accessible region by analytic computation

・Massive limit:

・Bosonization:
[Coleman ’76]

The fermion can be integrated out

ℒ =
1

8𝜋
𝜕𝜇𝜙

2
−

𝑔2

8𝜋2
𝜙2 +

𝑒𝛾𝑔

2𝜋3/2
𝑚 cos(𝜙 + 𝜃)

the theory becomes effectively pure Maxwell theory w/ 𝜃

&

exactly solvable for 𝑚 = 0

small 𝑚 regime is approximated by perturbation

&



Symmetries in charge-𝑞 Schwinger model

・𝒁𝒒 chiral symmetry for 𝑚 = 0

・𝒁𝒒 1-form symmetry

ABJ anomaly: 𝑈 1 𝐴 → 𝒁𝒒

remnant of 𝑈(1) 1-form sym. in pure Maxwell

known to be spontaneously broken

Hilbert sp. is decomposed into 𝑞-sectors “universe”

(cf. common for 𝑑 − 1 -form sym. in 𝑑 dimensions)



FAQs on negative tension behavior
Q1. It sounds that many pair creations are favored. 

Is the theory unstable?

No. Negative tension appears only for 𝑞𝑝 ≠ 𝑞𝒁. 

So, such unstable pair creations do not occur.

+𝑞−𝑞

−𝑞 +𝑞

annihilation

+𝑞−𝑞

∞ particles favored?

creation

attractive

repulsive



FAQs on negative tension behavior (cont’d)
[cf. MH-Itou-Kikuchi-Tanizaki ’21]

Inside & outside are in different sectors decomposed

by 𝑍𝑞 1-form sym.  

“universe”

𝑊𝑞𝑝𝐸inside 𝐸outside (= 𝐸0? )

Q2. It sounds 𝐸inside < 𝐸outside.  Strange?

𝐸inside = min
ℋℓ+𝑞𝑝

(𝐸) , 𝐸outside = min
ℋℓ

𝐸

ℋ =⊕ℓ=0
𝑞−1

ℋℓ

𝐸inside & 𝐸outside are lowest in each universe:



Comment on adiabatic state preparation

Advantage:

・costly — likely requires many gates 

・guaranteed to be correct for 𝑇 ≫ 1 & 𝛿𝑡 ≪ 1
if 𝐻𝐴(𝑡) has a unique gapped vacuum

Disadvantage:

・can directly get excited states under some conditions

・doesn’t work for degenerate vacua

more appropriate for FTQC than NISQ 

("systematic error") ∼
1

𝑇 gap 2



Without probes



VEV of mass operator (chiral condensation)

Instead of the local op., we analyze the average over the space: 

Once we get the vacuum, we can compute the VEV as

How can we obtain the vacuum?



Adiabatic state preparation (cont’d)

Here, we choose

𝐻0 = 𝐻 ቚ
𝑤→0, 𝜗𝑛→0, 𝑚→𝑚0

vac0 = |1010⋯ ⟩

𝐻𝐴(𝑡) = 𝐻 ቚ
𝑤→𝑤 𝑡 ,𝜗𝑛→𝜗𝑛 𝑡 , 𝑚→𝑚 𝑡

𝑤 𝑡 = 𝑓
𝑡

𝑇
𝑤,  𝜗𝑛 𝑡 = 𝑓

𝑡

𝑇
𝜗𝑛, 𝑚 𝑡 = 1 − 𝑓

𝑡

𝑇
𝑚0 + 𝑓

𝑡

𝑇
𝑚

𝑓(𝑠): smooth function s.t. 𝑓 0 = 0,  𝑓 1 = 1



Massless case

[Hetrick-Hosotani ’88]
∃Exact result:

For massless case, 

𝜃 is absorbed by chiral rotation

Nevertheless,

it’s difficult in conventional approach because computation of 
fermion determinant becomes very heavy

Can we reproduce it?

No sign problem

𝜃 = 0 w/o loss of generality



Thermodynamic & Continuum limit

#(measurements)

Thermodynamic limit (w/ fixed 𝑎) Continuum limit (after 𝑉 → ∞)



Estimation of systematic errors
[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]Approximation of vacuum:

Approximation of VEV:

Introduce the quantity

independent of t if

dependent on t if

This quantity describes  intrinsic ambiguities in prediction

Useful to estimate systematic errors



Estimation of systematic errors (Cont’d)

Oscillating around the correct value

Define central value & error as

&



Massive case

Result of mass perturbation theory: [Adam ’98]

∃subtlety in comparison: this quantity is UV divergent

Use a regularization scheme to have the same finite part

However,

Here we subtract free theory result before taking continuum limit:

ത𝜓 𝑥 𝜓 𝑥 ≃ −0.160𝑔 + 0.322𝑚 cos𝜃 + 𝒪(𝑚2)



Chiral condens. for massive case at g=1
[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]

mass perturbation

Tensor Network

[Banuls-Cichy-Jansen-Saito ’16]



𝜃 dependence at 𝑚 = 0.1 & 𝑔 = 1

⟨ ത𝜓𝜓⟩

mass perturbation



With probes



Results for 𝜃0 ≠ 0

Parameters: 𝑔 = 1, 𝑎 = 0.4,𝑁 = 15, 𝑇 = 99, 𝑞𝑝/𝑞 = 1,𝑚/𝑔 = 0.2

(difficult to explore by the conventional Monte Carlo approach)

[MH-Itou-Kikuchi-Nagano-Okuda ’21]

mass pert. (∞-vol.)

mass pert. (finite V) 



Comment on theta angle periodicity

Absence of the periodicity: 𝜃0 ∼ 𝜃0 + 2𝜋 ?

This is expected because we’re taking open b.c.

To get the periodicity back, we need to take ∞-vol. limit



Massless vs massive for 𝜃0 = 0 & 𝑞𝑝/𝑞 ∈ 𝒁

Parameters: 𝑔 = 1, 𝑎 = 0.4,𝑁 = 15 & 21, 𝑇 = 99, 𝑞𝑝/𝑞 = 1

Lines: analytical results in the continuum limit (finite & ∞ vols.)

Consistent w/ expected screening behavior

[MH-Itou-Kikuchi-Nagano-Okuda ’21]

𝑞𝑝 = 1,𝑚 = 0 𝑞𝑝 = 1,𝑚/𝑔 = 0.2



Results for 𝜃0 = 0 & 𝑞𝑝/𝑞 ∉ 𝒁

Parameters: 𝑔 = 1, 𝑎 = 0.4,𝑁 = 15, 𝑇 = 99, 𝑞𝑝/𝑞 = 1/4,𝑚 = 0 & 0.2

Lines: analytical results in the continuum limit (finite & ∞ vol.)

[MH-Itou-Kikuchi-Nagano-Okuda ’21]

(probe distance)
Consistent w/ expected confinement behavior



“String tension” for 𝜃0 = 0
Parameters: 𝑔 = 1, 𝑎 = 0.4, 𝑁 = 15, 𝑇 = 99,𝑚/𝑔 = 0.2

Classical Coulomb 

mass pert. (∞-vol.)

(~probe charge)

mass pert. (finite V) 
“string tension”

(slope for large

distance)

[MH-Itou-Kikuchi-Nagano-Okuda ’21]

𝑞𝑝/𝑞
confinement by nontrivial dynamics!



Comment: density plots of energy gap

smaller gap for larger ℓ

[MH-Itou-Kikuchi-Nagano-Okuda ’21]

Parameters: 𝑔 = 1, 𝑎 = 0.4,𝑁 = 15, 𝑞𝑝/𝑞 = 1,𝑚/𝑔 = 0.15

larger systematic error for larger ℓ

(known as “Tuna slice plot” inside the collaboration)



𝑁-dependence of 𝑉 w/ fixed physical volume
[MH-Itou-Kikuchi-Tanizaki ’21]



Continuum limit of string tension
[MH-Itou-Kikuchi-Tanizaki ’21]

𝑔 = 1, (Vol. ) = 9.6/𝑔, 𝑇 = 99, 𝑞𝑝/𝑞 = −1/3,𝑚 = 0.15, 𝜃0 = 2𝜋

basically agrees with mass perturbation theory



Energy density @ negative tension regime
[MH-Itou-Kikuchi-Tanizaki ’21]

𝑔 = 1, 𝑎 = 0.4, 𝑁 = 25, 𝑇 = 99, 𝑞𝑝/𝑞 = −1/3,𝑚 = 0.15, 𝜃0 = 2𝜋

Lower energy inside the probes!!



Comparison of 𝑞𝑝/𝑞 = −1/3 & 𝑞𝑝/𝑞 = 2/3
[MH-Itou-Kikuchi-Tanizaki ’21]

Parameters: q = 3, 𝑔 = 1, 𝑎 = 0.4,𝑁 = 25, 𝑇 = 99,𝑚 = 0.15

Similar slopes → (approximate)𝑍3 symmetry



𝑁-dependence of 𝑉 w/ fixed physical volume
[MH-Itou-Kikuchi-Tanizaki ’21]



Adiabatic scheduling
[MH-Itou-Kikuchi-Tanizaki ’21]


