量子計算の場の量子論への
 応用について

Masazumi Honda

(本多正純)

15th Nov., 2023

Tensor Network 2023

"Application of Quantum Computation to Quantum Field Theory (QFT)" ??

This talk = applications in two directions

1. practical

use quantum computer to simulate QFT

2. conceptual (?)

possible relations between gauge theory & quantum error correction

Plan

1. Practical applications

- Introduction
- QFT as qubits
- Schwinger model
- Recent attempts

2. Conceptual application

- Introduction
- Lightning review of QEC (quantum error correction)
 - QEC & Gauge theory

<u>3. Outlook</u>

[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya '20, MH-Itou-Kikuchi-Nagano-Okuda '21, MH-Itou-Kikuchi-Tanizaki '21, MH-Itou-Tanizaki '22]

Vision of practical applications

This talk:

Application of Quantum Computation to Quantum Field Theory (QFT)

Generic motivation:

simply would like to use powerful computers?

Specific motivation:

Quantum computation is suitable for operator formalism

→ Liberation from infamous sign problem in Monte Carlo?

Cost of operator formalism

We have to play with huge vector space

since QFT typically has <u>*o*-dim</u>. Hilbert space *regularization needed!*

Technically, computers have to

memorize huge vector & multiply huge matrices

Quantum computers do this job?

Plan

1. Practical applications

- Introduction
- QFT as qubits
- Schwinger model
- Recent attempts

2. Conceptual application

- Introduction
- Lightning review of QEC (quantum error correction)
 - QEC & Gauge theory

<u>3. Outlook</u>

[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya '20, MH-Itou-Kikuchi-Nagano-Okuda '21, MH-Itou-Kikuchi-Tanizaki '21, MH-Itou-Tanizaki '22]

"Regularization" of Hilbert space

Hilbert space of QFT is typically ∞ dimensional

- → Make it finite dimensional!
- Fermion is easiest (up to doubling problem)
 - —— Putting on spatial lattice, Hilbert sp. is finite dimensional

scalar

- •gauge field (w/ kinetic term)
 - no physical d.o.f. in 0+1D/1+1D (w/ open bdy. condition)
 - $-\infty$ dimensional Hilbert sp. in higher dimensions

(1+1)d free Dirac fermion (continuum)

Lagrangian:

$$\mathcal{L} = \int dx \Big[i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - m\bar{\psi}\psi \Big] \quad \{\gamma^{\mu}, \gamma^{\nu}\} = 2\eta^{\mu\nu}$$
$$\int \frac{\partial \mathcal{L}}{\partial(\partial_{t}\psi)} = \bar{\psi}$$

Hamiltonian:

$$H = \int dx \left[-i\bar{\psi}\gamma^1 \partial_1 \psi + m\bar{\psi}\psi \right]$$

$$\{\psi(x), \overline{\psi}(y)\} = \delta(x-y)$$

(1+1)d free Dirac fermion (lattice)

$\underbrace{Continuum:}_{H = \int dx \left[-i\bar{\psi}\gamma^{1}\partial_{1}\psi + m\bar{\psi}\psi \right]}_{H = \int dx \left[-i(\psi_{u}^{\dagger}\partial_{1}\psi_{d} + \psi_{d}^{\dagger}\partial_{1}\psi_{u}) + m(\psi_{u}^{\dagger}\psi_{u} - \psi_{d}^{\dagger}\psi_{d}) \right]}_{Q}$

Lattice (w/ N sites and spacing a):

"Staggered fermion" [Susskind, Kogut-Susskind '75]

$$\frac{\chi_n}{a^{1/2}} \longleftrightarrow \psi(x) = \begin{pmatrix} \psi_u \\ \psi_d \end{pmatrix} \xrightarrow{} \text{odd site} \\ \psi_d \xrightarrow{} \text{even site}$$

(1+1)d free Dirac fermion (lattice)

$\underbrace{Continuum:}_{H = \int dx \left[-i\bar{\psi}\gamma^{1}\partial_{1}\psi + m\bar{\psi}\psi \right]}_{H = \int dx \left[-i(\psi_{u}^{\dagger}\partial_{1}\psi_{d} + \psi_{d}^{\dagger}\partial_{1}\psi_{u}) + m(\psi_{u}^{\dagger}\psi_{u} - \psi_{d}^{\dagger}\psi_{d}) \right]}_{= \int dx \left[-i(\psi_{u}^{\dagger}\partial_{1}\psi_{d} + \psi_{d}^{\dagger}\partial_{1}\psi_{u}) + m(\psi_{u}^{\dagger}\psi_{u} - \psi_{d}^{\dagger}\psi_{d}) \right]}_{\int}_{\int}_{Iattice (w/N sites and spacing a):} "Staggered fermion" [Suskind, Kogut-Suskind '75]}$

$$\frac{\chi_n}{a^{1/2}} \longleftrightarrow \psi(x) = \begin{pmatrix} \psi_u \\ \psi_d \end{pmatrix} \xrightarrow{} \text{odd site}$$
 even site

$$H = -\frac{i}{2a} \sum_{n=1}^{N-1} \left(\chi_n^{\dagger} \chi_{n+1} - \chi_{n+1}^{\dagger} \chi_n \right) + m \sum_{n=1}^{N} (-1)^n \chi_n^{\dagger} \chi_n$$

$$\{\chi_m, \chi_n^{\dagger}\} = \delta_{\mathrm{mn}}, \ \{\chi_m, \chi_n\} = 0$$

Jordan-Wigner transformation

$$\{\chi_m,\chi_n^{\dagger}\}=\delta_{\mathrm{mn}},\ \{\chi_m,\chi_n\}=0$$

This is satisfied by the operator:

[Jordan-Wigner'28]

$$\chi_n = \frac{X_n - \mathrm{i}Y_n}{2} \left(\prod_{i=1}^{n-1} - \mathrm{i}Z_i\right) \qquad (X_n, Y_n, Z_n; \sigma_{1,2,3} \text{ at site } n)$$

Jordan-Wigner transformation

$$\{\chi_m,\chi_n^{\dagger}\}=\delta_{\mathrm{mn}},\ \{\chi_m,\chi_n\}=0$$

This is satisfied by the operator:

[Jordan-Wigner'28]

$$\chi_n = \frac{X_n - iY_n}{2} \left(\prod_{i=1}^{n-1} - iZ_i \right) \qquad (X_n, Y_n, Z_n; \sigma_{1,2,3} \text{ at site } n)$$

Then the system is mapped to the spin system:

$$\hat{H} = \frac{w}{2} \sum_{n=1}^{N-1} \left(X_n X_{n+1} + Y_n Y_{n+1} \right) + \frac{m}{2} \sum_{n=1}^{N} (-1)^n Z_n$$

Now we can apply quantum algorithms to QFT!

Scalar field theory (continuum)

Lagrangian:

$$\mathcal{L} = \frac{1}{2} \eta^{\mu\nu} (\partial_{\mu} \phi) (\partial_{\nu} \phi) - V(\phi)$$
$$\int \Pi(\mathbf{x}) = \frac{\partial \mathcal{L}}{\partial(\partial_{t} \phi)} = \partial_{t} \phi$$

Hamiltonian:

$$\mathcal{H}(\boldsymbol{x}) = \frac{1}{2}\Pi^2 + \frac{1}{2}(\partial_i \phi)^2 + V(\phi)$$

$$[\phi(\mathbf{x}), \Pi(\mathbf{y})] = i\delta^{(d)}(\mathbf{x} - \mathbf{y})$$

Scalar field theory (lattice)

Continuum Hamiltonian:

$$H = \int d^{d}x \left[\frac{1}{2} \Pi^{2} + \frac{1}{2} (\partial_{i}\phi)^{2} + V(\phi) \right]$$
$$\int d^{d}x \rightarrow a^{d} \sum_{n},$$
$$\partial_{\mu}\phi(x) \rightarrow \Delta_{\mu}\phi(x_{n}) \equiv \frac{\phi(x_{n} + ae_{\mu}) - \phi(x_{n})}{a}$$

Lattice Hamiltonian (simplest):

$$H = a^d \sum_n \left[\frac{1}{2} \Pi_n^2 + \frac{1}{2} \sum_i (\Delta_i \phi_n)^2 + V(\phi_n) \right]$$

$$[\phi(\boldsymbol{x}_{\boldsymbol{m}}), \Pi(\boldsymbol{x}_{\boldsymbol{n}})] = i\delta_{\boldsymbol{m},\boldsymbol{n}}$$

technically the same as multi-particle QM

Regularization for single particle QM

$$\widehat{H} = \frac{1}{2}\hat{p}^{2} + \frac{\omega^{2}}{2}\hat{x}^{2} + V_{\text{int}}(\hat{x})$$

Most naïve approach = truncation in harmonic osc. basis:

Regularization for single particle QM

$$\widehat{H} = \frac{1}{2}\hat{p}^{2} + \frac{\omega^{2}}{2}\hat{x}^{2} + V_{\text{int}}(\hat{x})$$

Most naïve approach = truncation in harmonic osc. basis:

Then replace $\hat{p} \& \hat{x}$ by

 $\hat{x}\Big|_{\text{regularized}} \equiv \frac{1}{\sqrt{2\omega}} (\hat{a} + \hat{a}^{\dagger})\Big|_{\text{regularized}}$ $\hat{p}\Big|_{\text{regularized}} \equiv \frac{1}{i} \sqrt{\frac{\omega}{2}} (\hat{a} - \hat{a}^{\dagger})\Big|_{\text{regularized}}$

Regularization for single particle QM (Cont'd)

$$\hat{a}\Big|_{\text{regularized}} = \sum_{n=0}^{\Lambda-2} \sqrt{n+1} |n\rangle\langle n+1|$$

We can rewrite the Fock basis in terms of qubits:

$$|n\rangle = |b_{K-1}\rangle |b_{K-2}\rangle \cdots |b_0\rangle \qquad K \equiv \log_2 \Lambda$$

$$n = b_{K-1}2^{K-1} + b_{K-2}2^{K-2} + \dots + b_02^0$$
 (binary representation)

Regularization for single particle QM (Cont'd)

$$\hat{a}\Big|_{\text{regularized}} = \sum_{n=0}^{\Lambda-2} \sqrt{n+1} |n\rangle\langle n+1|$$

We can rewrite the Fock basis in terms of qubits:

$$|n\rangle = |b_{K-1}\rangle|b_{K-2}\rangle\cdots|b_0\rangle \qquad K \equiv \log_2 \Lambda$$

$$n = b_{K-1}2^{K-1} + b_{K-2}2^{K-2} + \dots + b_02^0$$
 (binary representation)

Then,

$$|n\rangle\langle n+1| = \bigotimes_{\ell=0}^{K-1} (|b_{\ell}'\rangle\langle b_{\ell}|)$$

either one of

$$\begin{vmatrix} |0\rangle\langle 0| = \frac{\mathbf{1}_2 - \sigma_z}{2}, & |1\rangle\langle 1| = \frac{\mathbf{1}_2 + \sigma_z}{2}, \\ |0\rangle\langle 1| = \frac{\sigma_x + i\sigma_y}{2}, & |1\rangle\langle 0| = \frac{\sigma_x - i\sigma_y}{2} \end{vmatrix}$$

Pure Maxwell theory (continuum)

Lagrangian:

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \quad (F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu})$$

 $\int \text{temporal gauge } A_0 = 0$ $E^i = \frac{\partial \mathcal{L}}{\partial \dot{A}_i} = \dot{A}^i$

<u>Hamiltonian:</u>

$$\mathcal{H} = \frac{1}{2}E_i^2 + \frac{1}{2}B_i^2$$
$$[A_i(\mathbf{x}), E_j(\mathbf{y})] = i\delta_{ij}\delta^{(d)}(\mathbf{x} - \mathbf{y})$$

 $\partial_i E^i = 0$

Gauss law:

Ex. (1+1)d pure Maxwell theory w/ θ

Lattice:

$$H = \frac{g^2 a}{2} \sum_{n} \left(L_n + \frac{\theta}{2\pi} \right)^2 \qquad \qquad L_n \leftrightarrow -\frac{\Pi(x)}{g}$$

<u>Gauss law:</u>

$$L_{n+1} - L_n = 0$$

Ex. (1+1)d pure Maxwell theory w/ θ

Lattice:

$$H = \frac{g^2 a}{2} \sum_{n} \left(L_n + \frac{\theta}{2\pi} \right)^2 \qquad \qquad L_n \leftrightarrow -\frac{\Pi(x)}{g}$$

Gauss law:

$$L_{n+1} - L_n = 0$$

• open b.c. $L_n = L_{n-1} = L_{n-2} = \dots = L_1 = (b.c.)$ • p.b.c. $L_n = L_{n-1} = \dots = L_1 = \dots = L_{n+1} = L_n$ one d.o.f. remains

Short summary

(repeated)

Hilbert space of QFT is typically ∞ dimensional

- → Make it finite dimensional!
- Fermion is easiest (up to doubling problem)
 - —— Putting on spatial lattice, Hilbert sp. is finite dimensional
- scalar
 - —— Hilbert sp. at each site is ∞ dimensional (need truncation or additional regularization)
- gauge field (w/ kinetic term)
 - no physical d.o.f. in 0+1D/1+1D (w/ open bdy. condition)
 - $\sim \infty$ dimensional Hilbert sp. in higher dimensions

Plan

1. Practical applications

- Introduction
- •QFT as qubits
- Schwinger model
- Recent attempts

2. Conceptual application

- Introduction
- Lightning review of QEC (quantum error correction)
 - QEC & Gauge theory

<u>3. Outlook</u>

[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya '20, MH-Itou-Kikuchi-Nagano-Okuda '21, MH-Itou-Kikuchi-Tanizaki '21, MH-Itou-Tanizaki '22]

<u>Charge-q</u> Schwinger model

Continuum:

$$L = \frac{1}{2g^2}F_{01}^2 + \frac{\theta_0}{2\pi}F_{01} + \overline{\psi}\,\mathrm{i}\,\gamma^\mu(\partial_\mu + \mathrm{i}\,q\,A_\mu)\psi - m\,\overline{\psi}\psi$$

Taking temporal gauge $A_0 = 0$, (II: conjugate momentum of A_1)

$$H(x) = \frac{g^2}{2} \left(\Pi - \frac{\theta_0}{2\pi} \right)^2 - \bar{\psi} \operatorname{i} \gamma^1 (\partial_1 + \operatorname{i} q A_1) \psi + m \bar{\psi} \psi,$$

Physical states are constrained by Gauss law:

$$0 = -\partial_1 \Pi - q g \bar{\psi} \gamma^0 \psi$$

Map of accessibility/difficulty

Lattice theory w/ staggered fermion

Hamiltonian:

$$H = J \sum_{n=0}^{N-2} \left(L_n + \frac{\theta_0}{2\pi} \right)^2 - \mathrm{i}w \sum_{n=0}^{N-2} \left[\chi_n^{\dagger} (U_n)^q \chi_{n+1} - \mathrm{h.c.} \right] + m \sum_{n=0}^{N-1} (-1)^n \chi_n^{\dagger} \chi_n \left[w = \frac{1}{2a}, J = \frac{g^2 a}{2} \right]$$

Commutation relation:

$$[L_n, U_m] = U_m \delta_{nm}, \quad \{\chi_n, \chi_m^{\dagger}\} = \delta_{nm}$$

Gauss law:

$$L_n - L_{n-1} = q \left[\chi_n^{\dagger} \chi_n - \frac{1 - (-1)^n}{2} \right]$$

Eliminate gauge d.o.f.

1. Take open b.c. & solve Gauss law:

$$L_n = L_{-1} + q \sum_{j=1}^n \left(\chi_j^{\dagger} \chi_j - \frac{1 - (-1)^j}{2} \right) \qquad \text{w/} L_{-1} = 0$$

2. Take the gauge $U_n = 1$

Then,

$$H = -\mathrm{i}w \sum_{n=1}^{N-1} \left[\chi_n^{\dagger} \chi_{n+1} - \mathrm{h.c.} \right] + m \sum_{n=1}^{N} (-1)^n \chi_n^{\dagger} \chi_n$$
$$+ J \sum_{n=1}^{N} \left[\frac{\theta_0}{2\pi} + q \sum_{j=1}^{n} \left(\chi_j^{\dagger} \chi_j - \frac{1 - (-1)^j}{2} \right) \right]^2.$$

This acts on finite dimensional Hilbert space

Insertion of the probe charges

ign la A

(1) Introduce the probe charges $\pm q_p$:

$$e^{iq_{p} \int_{S,\partial S=C} F} \log \frac{d}{d}$$

$$e^{iq_{p} \int_{S,\partial S=C} F} \log \frac{\theta}{d}$$

 $t = +\infty$

 $oxed{2}$ Include it to the action & switch to Hamilton formalism

$$\begin{array}{cccc} \theta = \theta_0 & +q_p & \theta = \theta_0 + 2\pi q_p & -q_p & \theta = \theta_0 \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & &$$

3 Compute the ground state energy (in the presence of the probes)

Going to spin system

$$\{\chi_n^{\dagger},\chi_m\}=\delta_{mn},\ \{\chi_n,\chi_m\}=0$$

ln-1

This is satisfied by the operator:

"Jordan-Wigner transformation"

[Jordan-Wigner'28]

$$\chi_n = \frac{X_n - iY_n}{2} \left(\prod_{i=1}^{n-1} - iZ_i \right) \qquad (X_n, Y_n, Z_n: \sigma_{1,2,3} \text{ at site } n)$$

Now the system is purely a spin system:

$$H = -\mathrm{i}w \sum_{n=1}^{N-1} \left[\chi_n^{\dagger} \chi_{n+1} - \mathrm{h.c.} \right] + m \sum_{n=1}^{N} (-1)^n \chi_n^{\dagger} \chi_n + J \sum_{n=1}^{N} \left[\frac{\vartheta_n}{2\pi} + q \sum_{j=1}^n \left(\chi_j^{\dagger} \chi_j - \frac{1 - (-1)^j}{2} \right) \right]^2$$
$$\int \\ H = J \sum_{n=0}^{N-2} \left[q \sum_{i=0}^n \frac{Z_i + (-1)^i}{2} + \frac{\vartheta_n}{2\pi} \right]^2 + \frac{w}{2} \sum_{n=0}^{N-2} \left[X_n X_{n+1} + Y_n Y_{n+1} \right] + \frac{m}{2} \sum_{n=0}^{N-1} (-1)^n Z_n$$

Qubit description of the Schwinger model !!

Even N or odd N?

- Usually even N is taken (p.b.c. allows only even N)
- Open b.c. allows both but parity is different: $\chi_n \rightarrow i(-1)^n \chi_{N-n-1}$

	<i>n</i> mod 2	$\bar{\psi}\psi\sim\sum_n(-1)^n\chi_n^\dagger\chi_n$	$\bar{\psi}\gamma^5\psi\sim\sum_n(-1)^n(\chi_n^\dagger\chi_{n+1}-\mathrm{h.c.})$
even N	changes	flipped	invariant
odd N	invariant	invariant	flipped

Odd *N* seems more like the continuum theory?

Constructing ground state

[∃]various quantum algorithms to construct vacuum:

- adiabatic state preparation
- algorithms based on variational method
- imaginary time evolution

etc...

Here, let's apply

adiabatic state preparation

Adiabatic state preparation

<u>Step 1</u>: Choose an initial Hamiltonian H_0 of a simple system whose ground state $|vac_0\rangle$ is known and unique

<u>Step 2</u>:

<u>Step 3</u>:

Adiabatic state preparation

<u>Step 1</u>: Choose an initial Hamiltonian H_0 of a simple system whose ground state $|vac_0\rangle$ is known and unique

<u>Step 2</u>: Introduce adiabatic Hamiltonian $H_A(t)$ s.t.

$$\begin{bmatrix} \bullet H_A(0) = H_0, \ H_A(T) = H_{\text{target}} \\ \bullet \left| \frac{dH_A}{dt} \right| \ll 1 \text{ for } T \gg 1 \end{bmatrix}$$

<u>Step 3</u>:

Adiabatic state preparation

<u>Step 1</u>: Choose an initial Hamiltonian H_0 of a simple system whose ground state $|vac_0\rangle$ is known and unique

<u>Step 2</u>: Introduce adiabatic Hamiltonian $H_A(t)$ s.t.

$$\begin{bmatrix} \bullet H_A(0) = H_0, \ H_A(T) = H_{\text{target}} \\ \bullet \left| \frac{dH_A}{dt} \right| \ll 1 \text{ for } T \gg 1 \end{bmatrix}$$

<u>Step 3</u>: Use the adiabatic theorem

If $H_A(t)$ has a unique ground state w/ a finite gap for $\forall t$, then the ground state of H_{target} is obtained by

$$|\mathrm{vac}\rangle = \lim_{T \to \infty} \mathcal{T} \exp\left(-i \int_0^T dt \, H_A(t)\right) |\mathrm{vac}_0\rangle$$
Demo: chiral condensate in massless case

 $T = 100, \delta t = 0.1, N_{max} = 16, 1M$ shots

[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya '20]

(after continuum limit)

Screening versus Confinement

Let's consider

potential between 2 heavy charged particles

Classical picture:

$$V(x) = \frac{q_p^2 g^2}{2} x ? \qquad \begin{array}{c} Coulomb \ law \ in 1+1d \\ | \\ confinement \end{array}$$

too naive in the presence of dynamical fermions

Expectations from previous analyzes

Potential between probe charges $\pm q_p$ has been analytically computed

[Iso-Murayama '88, Gross-Klebanov-Matytsin-Smilga '95]

 $\mu \equiv g/\sqrt{\pi}$

massless case:

$$V(x) = \frac{q_p^2 g^2}{2\mu} (1 - e^{-q\mu x}) \quad screening$$

massive case:

Expectations from previous analyzes

Potential between probe charges $\pm q_p$ has been analytically computed

[Iso-Murayama '88, Gross-Klebanov-Matytsin-Smilga '95]

massless case:

$$V(x) = \frac{q_p^2 g^2}{2\mu} (1 - e^{-q\mu x}) \quad screening$$

$$\mu \equiv g/\sqrt{\pi}$$

massive case:

[cf. Misumi-Tanizaki-Unsal '19]

 $\Sigma \equiv g e^{\gamma} / 2\pi^{3/2}$

$$V(x) \sim mq\Sigma \left(\cos \left(\frac{\theta + 2\pi q_p}{q} \right) - \cos \left(\frac{\theta}{q} \right) \right) x \qquad (m \ll g, \ |x| \gg 1/g)$$

$$= Const. \quad \text{for } q_p/q = \mathbf{Z} \qquad screening$$

$$\propto x \qquad \text{for } q_p/q \neq \mathbf{Z} \qquad confinement?$$

$$but \ sometimes \ negative \ slope!$$

That is, as changing the parameters...

Let's explore this aspect by quantum simulation!

Positive / negative string tension

[MH-Itou-Kikuchi-Tanizaki '21]

Sign(tension) changes as changing θ -angle!!

Energy density @ negative tension regime

[MH-Itou-Kikuchi-Tanizaki '21]

 $g = 1, a = 0.4, N = 25, T = 99, q_p/q = -1/3, m = 0.15, \theta_0 = 2\pi$

Lower energy inside the probes!!

Towards "quantum supremacy"?

The problems in this talk involve only ground state in 1+1D \rightarrow Tensor Network is better \rightarrow able to take $N = \mathcal{O}(100)$ [MH-Itou-Tanizaki '22]

Towards "quantum supremacy"?

The problems in this talk involve only ground state in 1+1D \rightarrow Tensor Network is better \rightarrow able to take $N = \mathcal{O}(100)$ [MH-Itou-Tanizaki '22]

Tensor Network (DMRG):

Towards "quantum supremacy"?

The problems in this talk involve only ground state in 1+1D \rightarrow Tensor Network is better \rightarrow able to take $N = \mathcal{O}(100)$ [MH-Itou-Tanizaki '22]

should study problems not efficiently simulated by MC & TN

Iong time evolution, many pt. function, non-local op.

• system w/ strong entanglement (matrix models?)

Other simulations of Schwinger model

decay of massive vacuum under time evolution

[cf. Martinez etal. Nature 534 (2016) 516-519]

- quenched dynamics of θ [Nagano-Bapat-Bauer'23]
- Schwinger model in open quantum system

[De Jong-Metcalf-Mulligan-Ploskon-Ringer-Yao '20, de Jong-Lee-Mulligan-Ploskon-Ringer-Yao '21, Lee-Mulligan-Ringer-Yao '23]

100 qubit simulation of Schwinger model

[Farrell-Illa-Ciavarella-Savage '23]

- finding energy spectrum [MH-Ghim, work in progress]
- finite temperature [Itou-Sun-Pedersen-Yunoki, work in progress]

Plan

[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya '20, MH-Itou-Kikuchi-

Nagano-Okuda '21, MH-Itou-Kikuchi-Tanizaki '21, MH-Itou-Tanizaki '22]

1. Practical applications

- Introduction
- •QFT as qubits
- Schwinger model
- Recent attempts

2. Conceptual application

- Introduction
- Lightning review of QEC (quantum error correction)
 - QEC & Gauge theory

<u>3. Outlook</u>

Energy spectrum in quantum field theory

Information in energy spectrum:

- degeneracy of ground states
- energy gap between ground & 1st excited states
 - distribution of excited states at low levels

 \Rightarrow phase structure, mass spectrum of particles

<u>Energy spectrum in quantum field theory</u> Information in energy spectrum:

- degeneracy of ground states
- •energy gap between ground & 1st excited states
 - distribution of excited states at low levels
- phase structure, mass spectrum of particles

Desired algorithm:

efficient computation of spectrum at low levels (doesn't need ground state energy itself)

For this purpose, it seems inefficient to explicitly construct energy eigenstates one by one and measure their energies

Algorithm: coherent imaging spectroscopy

[Senko-Smith-Richerme-Lee-Campbell-Monroe '14] [working in progress, MH-Ghim]

We'd like to know spectrum of excited energies:

$$\widehat{H}_{\text{target}} | n \rangle = E_n | n \rangle$$

Time dependent Hamiltonian:

$$\widehat{H}(t; v) = \widehat{H}_{target} + Bsin(vt) \cdot \widehat{O}$$

Survival probability of ground state after some time:

$$P(\nu) \coloneqq |\langle 0|\mathcal{T}e^{-i\int dt \hat{H}(t;\nu)}|0\rangle|^2$$

becomes small when $\nu \sim E_n$

Coherent imaging spectroscopy in Ising model

[working in progress, MH-Ghim]

$$\widehat{H}_{\text{Ising}} = -J \sum_{n=1}^{N-1} Z_n Z_{n+1} - h \sum_{n=1}^{N} X_n - m \sum_{n=1}^{N} Z_n$$

Known phase diagram:

Let's consider time evolution by $\widehat{H}_{\text{Ising}} + B\sin(\nu t) \sum_{n=1}^{N} Y_n$

Coherent imaging spectroscopy in Ising model (cont'd)

[working in progress, MH-Ghim]

N = 8, m/J = 0.1 (|0) by adiabatic state preparation)

Coherent imaging spectroscopy in Schwinger model

$$H = J \sum_{n=0}^{N-2} \left(L_n + \frac{\theta_0}{2\pi} \right)^2 - \mathrm{i}w \sum_{n=0}^{N-2} \left[\chi_n^{\dagger} (U_n)^q \chi_{n+1} - \mathrm{h.c.} \right] + m \sum_{n=0}^{N-1} (-1)^n \chi_n^{\dagger} \chi_n$$

Expected phase diagram for q = 1:

Let's consider time evolution by (perturbed by " $\bar{\psi}\gamma_5\psi$ ") $\widehat{H} + B\sin(\nu t)\sum_{n=0}^{N-1}(-1)^n (\chi_n^{\dagger}\chi_{n+1} - \chi_{n+1}^{\dagger}\chi_n)$

Coherent imaging spectroscopy in Schwinger model (cont'd)

 $(N = 13, g = 1, w = 1, |0\rangle$ by adiabatic state preparation)

On higher dimensional fermion

Go to higher dimensions!

[MH, work in progress]

1st step: find a nice way to map 2d fermion to spins

Problem in naïve approach:

On higher dimensional fermion

Go to higher dimensions!

ONS!

[MH, work in progress]

1st step: find a nice way to map 2d fermion to spins

Problem in naïve approach:

- 1d $\chi_n = \frac{X_n - iY_n}{2} \left(\prod_{i=1}^{n-1} - iZ_i \right)$ $\chi_{n+1}^{\dagger} \chi_n \xrightarrow{\text{Jordan-Wigner}} \exists X_{n+1} X_n, Y_{n+1} Y_n, X_{n+1} Y_n, Y_{n+1} X_n$ $\exists X_{n+1} X_n, Y_{n+1} Y_n, X_{n+1} Y_n, Y_{n+1} X_n$
- 2d ($N \times N$ square lattice)

Relabeling site (i, j) like 1d label (say n = i + Nj),

 $\chi^{\dagger}_{(i,j+1)}\chi_{(i,j)} = \chi^{\dagger}_{I+N}\chi_{I} \xrightarrow{JW} \exists X_{I+N}X_{I} \prod_{i=I+1}^{I+N-1}Z_{i} \text{ , etc...}$

(cf. $O(\log N)$ for Bravyi-Kitaev trans.) *non-local*

Application of a new map to field theory

[Chen-Kapustin-Radicevic '17]

2 Majorana fermions on face Spin op. on edge

$$(-1)^{F_f} = -i\gamma_f \gamma'_f \longleftrightarrow W_f. \quad S_e = i\gamma_{L(e)} \gamma'_{R(e)} \longleftrightarrow U_e$$

where
$$W_f = \prod_{e \subset f} Z_e$$
. $U_e = X_e Z_{r(e)}$.

"Gauss law" constraint at site v: $W_{NE(v)} \prod_{e \supset v} X_e = 1.$

ex.)

Application of a new map to field theory

[Chen-Kapustin-Radicevic '17]

2 Majorana fermions on face Spin op. on edge

$$(-1)^{F_f} = -i\gamma_f \gamma'_f \longleftrightarrow W_f. \quad S_e = i\gamma_{L(e)} \gamma'_{R(e)} \longleftrightarrow U_e$$

where
$$W_f = \prod_{e \subset f} Z_e$$
. $U_e = X_e Z_{r(e)}$.

"Gauss law" constraint at site v: $W_{NE(v)} \prod_{e \supset v} X_e = 1.$

ex.) $H = t \sum_{e} (c_{L(e)}^{\dagger} c_{R(e)} + c_{R(e)}^{\dagger} c_{L(e)}) + \mu \sum_{f} c_{f}^{\dagger} c_{f}.$ $\longrightarrow H = \frac{t}{2} \sum_{e} X_{e} Z_{r(e)} (1 - W_{L(e)} W_{R(e)}) + \frac{\mu}{2} \sum_{f} (1 - W_{f}) \qquad \text{local}$

Some other applications

- Scattering [Jordan-Lee-Preskiill '17]
- Inflation (scalar in curved spacetime) [Liu-Li '20]
- Efficient simulation of (2+1)d U(1) gauge th.

[Kane-Grabowska-Nachman-Bauer '22]

- Chiral fermion [Hayata-Nakayama-Yamamoto'23]
- Quantum group approach to Non-abelian gauge th.

[Zache-Gonzalez-Cuadra-Zoller '23, Hayata-Hidaka '23]

- Dark sector showers [Chigusa-Yamazaki '22, Bauer-Chigusa-Yamazaki '23]
- Measurement-based quantum computation

[Okuda-Sukeno '22]

- quantum machine learning [Nagano-Miessen-Onodera-Tavernelli-Tacchino-Terashi '23]
- String/M-theory [Gharibyan-Hanada-MH-Liu'20]

<u>Plan</u>

[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya '20, MH-Itou-Kikuchi-

Nagano-Okuda '21, MH-Itou-Kikuchi-Tanizaki '21, MH-Itou-Tanizaki '22]

1. Practical applications

- Introduction
- •QFT as qubits
- Schwinger model
- Recent attempts

2. Conceptual application

Introduction

- Lightning review of QEC (quantum error correction)
 - •QEC & Gauge theory

<u>3. Outlook</u>

Quantum simulation is a promising approach

if [∃]much computational resource in future

Challenges:

- to get sufficient # of qubits to implement quantum error correction (QEC)
- to identify efficient ways to put gauge theory on quantum computers

This talk:

Quantum simulation is a promising approach

if [∃]much computational resource in future

Challenges:

 to get sufficient # of qubits to implement quantum error correction (QEC)

 to identify efficient ways to put gauge theory on quantum computers

<u>This talk:</u>

relations between QEC & gauge theory

Motivations

2.

3.

4.

[Spirit may be similar to Rajput-Roggaro-Wiebe '21, Gustafson-Lamm '23, etc...]

(some points elaborated later)

1. [∃]explicit examples

ex.) Toric code = Z_2 lattice gauge theory [Kitaev '97]

Motivations

3.

4.

[Spirit may be similar to Rajput-Roggaro-Wiebe '21, Gustafson-Lamm '23, etc...]

(some points elaborated later)

1. [∃]explicit examples

ex.) Toric code = Z_2 lattice gauge theory [Kitaev '97]

2. Conceptual similarities:

QEC = redundant description of logical qubits Gauge theory = redundant description of physical states

Motivations

[Spirit may be similar to Rajput-Roggaro-Wiebe '21, Gustafson-Lamm '23, etc...]

(some points elaborated later)

1. [∃] explicit examples

ex.) Toric code = Z_2 lattice gauge theory [Kitaev '97]

2. Conceptual similarities:

QEC = redundant description of logical qubits Gauge theory = redundant description of physical states

- 3. Nature = Gauge theory & Nature = Quantum computer
 - Gauge theory may know something on QEC?

4.

Motivations

[Spirit may be similar to Rajput-Roggaro-Wiebe '21, Gustafson-Lamm '23, etc...]

(some points elaborated later)

1. [∃] explicit examples

ex.) Toric code = Z_2 lattice gauge theory [Kitaev '97]

2. Conceptual similarities:

QEC = redundant description of logical qubits Gauge theory = redundant description of physical states

- 3. Nature = Gauge theory & Nature = Quantum computer
 - Gauge theory may know something on QEC?
- 4. [∃] proposals on relations among QEC & concepts in HEP ex.) Holography, Black hole, CFT, Renormalization group [Almheiri-Dong-Harlow '14, Hayden-Preskill '07, Dymarsky-Shapere '20, Kawabata-Nishioka-Okuda '22, Furuya-Lashkari-Moosa '21, etc...]

What I'm doing...

to make dictionary for classes of codes/gauge theories:

<u>QEC</u> errors

logical qubits

"no error conditions" (stabilizer)

logical op.

ancilla for recovery

Gauge theory

unphysical op. (& excitation)

physical states (w/low energy)

Gauss law (& min[energy])

gauge invariant op.

additional matter

<u>Plan</u>

1. Practical applications

- Introduction
- •QFT as qubits
- Schwinger model
- Recent attempts

2. Conceptual application

- Introduction
- Lightning review of QEC (quantum error correction)
 - QEC & Gauge theory

<u>3. Outlook</u>

[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya '20, MH-Itou-Kikuchi-Nagano-Okuda '21, MH-Itou-Kikuchi-Tanizaki '21, MH-Itou-Tanizaki '22]

Errors in classical computers

Computer interacts w/ environment error/noise

Suppose we send a bit but have "error" in probability p

Errors in classical computers

Computer interacts w/ environment error/noise

Suppose we send a bit but have "error" in probability p

A simple way to correct errors:

① Duplicate the bit (encoding): $0 \rightarrow 000$, $1 \rightarrow 111$

② Error detection & correction by "majority voting":

 $001 \rightarrow 000$, $011 \rightarrow 111$, etc...

 $P_{\text{failed}} = 3p^2(1-p) + p^3 \quad \text{(improved if } p < 1/2\text{)}$

Errors in quantum computers

Computer interacts w/ environment a error/noise

Unknown unitary operators are multiplied:

(in addition to decoherence & measurement errors)

 $U|\psi\rangle$ not only bit flip!
Errors in quantum computers

Computer interacts w/ environment a error/noise

Unknown unitary operators are multiplied:

(in addition to decoherence & measurement errors)

not only bit flip!

 $|U|\psi\rangle$

- have to detect errors & act "inverse of errors" to recover w/o destroying states
- need more qubits as in the classical case

Ex.) 3-qubit bit flip code

Bit flip error

$|\psi angle ightarrow ~X|\psi angle ~$ w/ probability p

Encoding

Error detection

Ex.) 3-qubit bit flip code

Bit flip error

$$|\psi
angle
ightarrow ~X|\psi
angle ~$$
 w/ probability p

Encoding

$$|\psi\rangle = c_0|0\rangle + c_1|1\rangle \longrightarrow |\psi_E\rangle = c_0|000\rangle + c_1|111\rangle$$

Error detection

Ex.) 3-qubit bit flip code

Bit flip error

$$|\psi
angle
ightarrow ~X|\psi
angle ~$$
 w/ probability p

Encoding

$$|\psi\rangle = c_0|0\rangle + c_1|1\rangle \longrightarrow |\psi_E\rangle = c_0|000\rangle + c_1|111\rangle$$

Error detection

If error occurs once, we can detect the error by knowing

$$Z_1Z_2$$
 & Z_2Z_3

"No error" condition:

 $(Z_1Z_2)|\psi_E\rangle = |\psi_E\rangle$, $(Z_2Z_3)|\psi_E\rangle = |\psi_E\rangle$

Error recovery in 3-qubit bit flip code

As in the classical case, it fails if \exists multiple "errors":

$$P_{\mathrm{failed}} = 3p^2(1-p) + p^3$$
 (improved if $p < 1/2$)

Quantum Error Correction

1.Encoding

$$|\psi\rangle \in \mathcal{H} \longrightarrow |\psi_E\rangle \in \mathcal{H}_E \quad (\mathcal{H} \subset \mathcal{H}_E)$$

2. Error detection

Take set of operators $\{O_1, \dots\}$ s.t.

 $O_i |\psi_E\rangle = |\psi_E\rangle, \quad O_i(\text{error}) |\psi_E\rangle \neq (\text{error}) |\psi_E\rangle$

Then find eigenvalues of O_i 's using ancillary qubits

3. Error recovery

Act "inverse of error" based on the eigenvalues

<u>Plan</u>

1. Practical applications

- Introduction
- •QFT as qubits
- Schwinger model
- Recent attempts

2. Conceptual application

- Introduction
- Lightning review of QEC (quantum error correction)
 - •QEC & Gauge theory

<u>3. Outlook</u>

[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya '20, MH-Itou-Kikuchi-Nagano-Okuda '21, MH-Itou-Kikuchi-Tanizaki '21, MH-Itou-Tanizaki '22]

Conceptual similarity?

Quantum error correction:

description of logical qubits by more qubits

Ex.) 3-qubit bit flip code

$$c_0|0\rangle + c_1|1\rangle \longrightarrow c_0|000\rangle + c_1|111\rangle$$

Gauge theory:

Conceptual similarity?

Quantum error correction:

description of logical qubits by more qubits

Ex.) 3-qubit bit flip code

 $c_0|0\rangle + c_1|1\rangle \longrightarrow c_0|000\rangle + c_1|111\rangle$

Gauge theory:

description of physical states by larger state space Ex.) U(1) gauge theory + matters $\nabla \cdot \widehat{E}(x) |\text{phys}\rangle = \widehat{\rho}(x) |\text{phys}\rangle$ "Gauss law"

Gauge theory on QC w/ error correction

When we don't solve Gauss law before simulation...

Gauge theory on QC w/ error correction

When we don't solve Gauss law before simulation...

Gauge theory on QC w/ error correction

When we don't solve Gauss law before simulation...

Gauge theory on QC w/ error correction (cont'd)

Could we avoid the redundancy²??

Possible hints:

Nature = quantum computerNature = gauge theory

 \Box quantum computer = gauge theory ??

Gauge theory knows something on error correction?

(I don't have a clear answer at this moment but I'm trying to make connections precise)

Ex.) Toric code

[Kitaev '97]

Consider 2d periodic square lattice and put qubits on edges

Ex.) Toric code

[Kitaev '97]

Consider 2d periodic square lattice and put qubits on edges

"No error" condition = minimum energy condition: $\prod_{e \in \partial(\text{face})} Z_e |\psi_E\rangle = |\psi_E\rangle, \quad \prod_{e \mid \partial e = \text{vertex}} X_e |\psi_E\rangle = |\psi_E\rangle$ $\square Opical op. = \text{products of } X, Z \text{ along nontrivial cycles}$

Ex.) Toric code (cont'd)

Z₂ gauge theory on 2d square lattice: $(U \sim e^{iA}, \Pi \sim e^{iE} \in \mathbb{Z}_2)$

$$H = g^{2} \sum_{e} \Pi_{e} - J \sum_{\text{face } e \in \partial(\text{face})} U_{e}$$

 $(\Pi_e U_{e'} \Pi_e^{\dagger} = -\delta_{ee'} U_e)$

Ex.) Toric code (cont'd)

Z₂ gauge theory on 2d square lattice: $(U \sim e^{iA}, \Pi \sim e^{iE} \in \mathbb{Z}_2)$

$$H = g^{2} \sum_{e} \Pi_{e} - J \sum_{\text{face } e \in \partial(\text{face})} U_{e}$$

Gauss law:

$$(\Pi_e U_{e'} \Pi_e^{\dagger} = -\delta_{ee'} U_e)$$

$$\prod_{e \mid \partial e = \text{vertex}} \Pi_e \mid \text{phys} \rangle = \mid \text{phys} \rangle$$

Ex.) Toric code (cont'd)

Z₂ gauge theory on 2d square lattice: $(U \sim e^{iA}, \Pi \sim e^{iE} \in \mathbb{Z}_2)$

$$H = g^{2} \sum_{e} \Pi_{e} - J \sum_{\text{face } e \in \partial(\text{face})} U_{e}$$

Gauss law:

$$(\Pi_e U_{e'} \Pi_e^{\dagger} = -\delta_{ee'} U_e)$$

$$\prod_{e \mid \partial e = \text{vertex}} \Pi_e \mid \text{phys} \rangle = \mid \text{phys} \rangle$$

Ground state for g = 0:

 $\prod_{e \mid \partial e = \text{vertex}} U_e \mid \text{ground} \rangle = \mid \text{ground} \rangle$

In identification (U-basis)~(computational basis), this is the same condition as the toric code

Ex.) Z_2 lattice gauge theory on 3 sites (cont'd)

Taking (computational basis) ~ (eigenstate of Π_n) $\int Z_1 Z_2 |phys\rangle = |phys\rangle, \quad Z_2 Z_3 |phys\rangle = |phys\rangle$ "no error" condition in 3-qubit bit flip code!

Error detection & recovery

Is there analogue of this in gauge theory? Ancilla may be matter on sites (next slide) Z_2 lattice gauge theory w/ a complex fermion

$$\chi_{2} \qquad (U \sim e^{iA}, \Pi \sim e^{iE} \in \mathbb{Z}_{2})$$

$$U_{1}, \Pi_{1} \qquad U_{2}, \Pi_{2}$$

$$\chi_{1} \qquad U_{3}, \Pi_{3} \qquad \chi_{3}$$
Hamiltonian:
$$H = -J \sum_{n=1}^{3} \left(\Pi_{n} + \Pi_{n}^{\dagger}\right) + w \sum_{n=1}^{3} \left(\chi_{n+1}^{\dagger} U_{n} \chi_{n} - \chi_{n}^{\dagger} U_{n}^{\dagger} \chi_{n+1}\right)$$
Commutation relation:

<u>Commutation relation:</u>

$$\Pi_m U_n \Pi_m^{\dagger} = -\delta_{mn} U_n \qquad \left\{ \chi_m, \chi_n^{\dagger} \right\} = \delta_{mn}$$

Gauss law:

$$\Pi_n \Pi_{n-1}^{\dagger} |\text{phys}\rangle = e^{i\pi \chi_n^{\dagger} \chi_n} |\text{phys}\rangle$$

Z₂ lattice gauge theory w/ a complex fermion (cont'd)

$$\chi_{2} \qquad (U \sim e^{iA}, \Pi \sim e^{iE} \in \mathbb{Z}_{2})$$

$$U_{1}, \Pi_{1} \qquad U_{2}, \Pi_{2} \qquad \chi_{3}$$

$$U_{3}, \Pi_{3} \qquad \chi_{3}$$

$$\Pi_{n}\Pi_{n-1}^{\dagger} |\text{phys}\rangle = e^{i\pi\chi_{n}^{\dagger}\chi_{n}} |\text{phys}\rangle$$

Taking (computational basis) ~ (eigenstate of Π_n) $\int Z_1 Z_2 |\text{phys}\rangle = e^{i\pi \chi_n^{\dagger} \chi_n} |\text{phys}\rangle, \quad Z_2 Z_3 |\text{phys}\rangle = e^{i\pi \chi_n^{\dagger} \chi_n} |\text{phys}\rangle$ Measuring Fermion charge = Syndrome measurement?

Some generalizations [MH, work in progress]

• Z_2 theory on 1d periodic lattice w/ (2n + 1) sites = [2n + 1, 1, 2n + 1] code

$$(1)$$
 = [6,2,3], (1) = [9,3,3], ...

- Phase flip code is done by changing basis
- Shor code seems to need products of plaquettes

•
$$Z_2 \rightarrow Z_N$$
 makes qubit qudit w/ $d = N$

 5-qubit perfect code is a special case of variant of toric code [Bonilla Ataides etal. '20]

<u>Summary</u>

[MH, work in progress]

"QEC/Gauge correspondence"

QEC errors logical qubits "no error conditions" (stabilizer) logical op. ancilla for recovery

Gauge theory

unphysical op. (& excitation)

physical states (w/ low energy)

Gauss law (& min[energy])

gauge invariant op.

additional matter

Outlook

The challenge by IBM's 127-qubit device

Article

Evidence for the utility of quantum computing before fault tolerance

https://doi.org/10.1038/s41586-023-06096-3

Received: 24 February 2023

Accepted: 18 April 2023

Published online: 14 June 2023

Youngseok Kim^{1,6}, Andrew Eddins^{2,6}, Sajant Anand³, Ken Xuan Wei¹, Ewout van den Berg¹, Sami Rosenblatt¹, Hasan Nayfeh¹, Yantao Wu^{3,4}, Michael Zaletel^{3,5}, Kristan Temme¹ & Abhinav Kandala¹

Quantum computing promises to offer substantial speed-ups over its classical

The challenge by IBM's 127-qubit device (cont'd)

<u>Task</u>: time evolution of Ising model on a lattice w/ shape = the qubit config. of the device

$$H = -J \sum_{\langle i,j \rangle} Z_i Z_j + h \sum_i X_i,$$

$$|\psi(t)\rangle \coloneqq e^{-iHt}|00\cdots 0\rangle$$

 $\langle \psi(t) | \mathcal{O} | \psi(t) \rangle$

Strategy: Suzuki-Trotter approximation + error mitigation by extrapolation

The challenge by IBM's 127-qubit device (cont'd)

O Unmitigated • Mitigated - MPS ($\chi = 1,024$; 127 qubits) - isoTNS ($\chi = 12$; 127 qubits) - Exact

"Quantum supremacy"?

<u>But...</u>

arxiv > quant-ph > arXiv:2306.14887

Quantum Physics

[Submitted on 26 Jun 2023]

Efficient tensor network simulation of IBM's kicked Ising experiment

Joseph Tindall, Matt Fishman, Miles Stoudenmire, Dries Sels

"Quantum" Moore's law?

Appendix

Sign problem in Monte Carlo simulation

Conventional approach to simulate QFT:

① Discretize Euclidean spacetime by lattice:

& make path integral finite dimensional:

$$\int D\phi \ \mathcal{O}(\phi) e^{-S[\phi]} \qquad \longrightarrow \qquad \int d\phi \ \mathcal{O}(\phi) e^{-S(\phi)}$$

② Numerically Evaluate it by (Markov Chain) Monte Carlo method regarding the Boltzmann factor as a probability:

$$\langle \mathcal{O}(\phi) \rangle \simeq \frac{1}{\sharp(\text{samples})} \sum_{i \in \text{samples}} \mathcal{O}(\phi_i)$$

Sign problem in Monte Carlo simulation (Cont'd)

Markov Chain Monte Carlo:

$$\int d\phi \,\, \mathcal{O}(\phi) e^{-S(\phi)}$$
 probability

problematic when Boltzmann factor isn't $R_{\geq 0}$ & is highly oscillating

Examples w/ sign problem:

- $\begin{array}{c} \bullet \text{topological term} & --- & \text{complex action} \\ \bullet \text{chemical potential} & --- & \text{indefinite sign of fermion determinant} \\ \bullet \text{real time} & --- & e^{iS(\phi)} & \text{much worse} \end{array} \end{array}$

In operator formalism,

sign problem is absent from the beginning

Schwinger model
Accessible region by analytic computation

• Massive limit:

The fermion can be integrated out

&

the theory becomes effectively pure Maxwell theory w/ θ

Bosonization:

[Coleman '76]

$$\mathcal{L} = \frac{1}{8\pi} (\partial_{\mu} \phi)^{2} - \frac{g^{2}}{8\pi^{2}} \phi^{2} + \frac{e^{\gamma} g}{2\pi^{3/2}} m \cos(\phi + \theta)$$

exactly solvable for m = 0

&

small m regime is approximated by perturbation

Symmetries in charge-q Schwinger model

$$L = \frac{1}{2g^2}F_{01}^2 + \frac{\theta_0}{2\pi}F_{01} + \overline{\psi}\,\mathrm{i}\,\gamma^\mu(\partial_\mu + \mathrm{i}\,q\,A_\mu)\psi - m\,\overline{\psi}\psi$$

• Z_q chiral symmetry for m = 0

— ABJ anomaly:
$$U(1)_A \rightarrow Z_q$$

- known to be spontaneously broken
- • Z_q 1-form symmetry
 - remnant of U(1) 1-form sym. in pure Maxwell
 - Hilbert sp. is decomposed into q-sectors "universe" (cf. common for (d - 1)-form sym. in d dimensions)

FAQs on negative tension behavior

Q1. It sounds that many pair creations are favored. Is the theory unstable?

No. Negative tension appears only for $q_p \neq q\mathbf{Z}$. So, such unstable pair creations do not occur.

FAQs on negative tension behavior (cont'd)

[cf. MH-Itou-Kikuchi-Tanizaki '21]

$$E_{\text{inside}} \wedge W_{q_p} \quad E_{\text{outside}} (= E_0?)$$

- Q2. It sounds $E_{\text{inside}} < E_{\text{outside}}$. Strange?
- —— Inside & outside are in different sectors decomposed by Z_q 1-form sym.

$$\mathcal{H} = \bigoplus_{\ell=0}^{q-1} \mathcal{H}_{\ell} \quad \text{``universe''}$$

 $E_{\text{inside}} \& E_{\text{outside}}$ are lowest in each universe:

$$E_{\text{inside}} = \min_{\mathcal{H}_{\ell+q_p}} (E), \quad E_{\text{outside}} = \min_{\mathcal{H}_{\ell}} (E)$$

Comment on adiabatic state preparation

("systematic error") ~
$$\frac{1}{T (gap)^2}$$

😄 <u>Advantage:</u>

- •guaranteed to be correct for $T \gg 1 \& \delta t \ll 1$ if $H_A(t)$ has a unique gapped vacuum
- can directly get excited states under some conditions

Disadvantage:

- doesn't work for degenerate vacua
- costly likely requires many gates

more appropriate for FTQC than NISQ

Without probes

VEV of mass operator (chiral condensation)

$$\langle \bar{\psi}(x)\psi(x)\rangle = \langle \mathsf{vac}|\bar{\psi}(x)\psi(x)|\mathsf{vac}\rangle$$

Instead of the local op., we analyze the average over the space:

$$\frac{1}{2Na} \langle \mathsf{vac} | \sum_{n=1}^{N} (-1)^n Z_n | \mathsf{vac} \rangle$$

Once we get the vacuum, we can compute the VEV as

$$\frac{1}{2Na} \langle \operatorname{vac} | \sum_{n=1}^{N} (-1)^{n} Z_{n} | \operatorname{vac} \rangle = \frac{1}{2Na} \sum_{n=1}^{N} (-1)^{n} \sum_{i_{1} \cdots i_{N} = 0, 1} \langle \operatorname{vac} | Z_{n} | i_{1} \cdots i_{N} \rangle \langle i_{1} \cdots i_{N} | \operatorname{vac} \rangle$$
$$= \frac{1}{2Na} \sum_{n=1}^{N} \sum_{i_{1} \cdots i_{N} = 0, 1} (-1)^{n+i_{n}} | \langle i_{1} \cdots i_{N} | \operatorname{vac} \rangle |^{2}$$

How can we obtain the vacuum?

<u>Adiabatic state preparation (cont'd)</u>

$$|\operatorname{vac}\rangle = \lim_{T \to \infty} \mathcal{T} \exp\left(-i \int_{0} dt \ H_{A}(t)\right) |\operatorname{vac}_{0}\rangle$$
$$\simeq U(T)U(T - \delta t) \cdots U(2\delta t)U(\delta t) |\operatorname{vac}_{0}\rangle$$

 $\left(U(t) = e^{-iH_A(t)\delta t}\right)$

Here, we choose

$$\begin{cases} H_0 = H \Big|_{w \to 0, \, \vartheta_n \to 0, \, m \to m_0} & \longrightarrow & |vac_0\rangle = |1010 \cdots \rangle \\ H_A(t) = H \Big|_{w \to w(t), \vartheta_n \to \vartheta_n(t), \, m \to m(t)} \\ w(t) = f\left(\frac{t}{T}\right) w, \, \vartheta_n(t) = f\left(\frac{t}{T}\right) \vartheta_n, \quad m(t) = \left(1 - f\left(\frac{t}{T}\right)\right) m_0 + f\left(\frac{t}{T}\right) m_0 \end{cases}$$

f(s): smooth function s.t. f(0) = 0, f(1) = 1

For massless case,

 θ is absorbed by chiral rotation $\theta = 0$ w/o loss of generality

No sign problem

Nevertheless,

it's difficult in conventional approach because computation of fermion determinant becomes very heavy

[∃]Exact result:

[Hetrick-Hosotani '88]

$$\langle \bar{\psi}(x)\psi(x)\rangle = -\frac{e^{\gamma}}{2\pi^{3/2}}g \simeq -0.160g$$

Can we reproduce it?

Thermodynamic & Continuum limit

 $g = 1, m = 0, N_{\text{max}} = 16, T = 100, \delta t = 0.1, 1M$ shots #(measurements)

Estimation of systematic errors

<u>Approximation of vacuum:</u>

[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya '20]

 $|vac\rangle \simeq U(T)U(T-\delta t)\cdots U(2\delta t)U(\delta t)|vac_0\rangle \equiv |vac_A\rangle$

Approximation of VEV:

$$\langle \mathcal{O} \rangle \equiv \langle \mathsf{vac} | \mathcal{O} | \mathsf{vac} \rangle \simeq \langle \mathsf{vac}_A | \mathcal{O} | \mathsf{vac}_A \rangle$$

Introduce the quantity

$$\langle \mathcal{O} \rangle_A(t) \equiv \langle \mathsf{vac}_A | e^{i \hat{H} t} \mathcal{O} e^{-i \hat{H} t} | \mathsf{vac}_A \rangle$$

 $\begin{array}{|c|c|c|} & \text{independent of t if } |\mathsf{vac}_A\rangle = |\mathsf{vac}\rangle \\ & \text{dependent on t if } |\mathsf{vac}_A\rangle \neq |\mathsf{vac}\rangle \end{array}$

This quantity describes intrinsic ambiguities in prediction Useful to estimate systematic errors

Estimation of systematic errors (Cont'd)

Oscillating around the correct value

Define central value & error as

 $\frac{1}{2}\left(\max\langle\mathcal{O}\rangle_A(t) + \min\langle\mathcal{O}\rangle_A(t)\right) \quad \& \quad \frac{1}{2}\left(\max\langle\mathcal{O}\rangle_A(t) - \min\langle\mathcal{O}\rangle_A(t)\right)$

Massive case

Result of mass perturbation theory:

[Adam '98]

$$\langle \bar{\psi}(x)\psi(x) \rangle \simeq -0.160g + 0.322m\cos\theta + \mathcal{O}(m^2)$$

However,

^I subtlety in comparison: this quantity is UV divergent $(\sim m \log \Lambda)$

Use a regularization scheme to have the same finite part

Here we subtract free theory result before taking continuum limit:

$$\lim_{a\to 0} \left[\langle \bar{\psi}\psi \rangle - \langle \bar{\psi}\psi \rangle_{\text{free}} \right]$$

Chiral condens. for massive case at g=1

[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya '20]

θ dependence at m = 0.1 & g = 1

With probes

Results for $\theta_0 \neq 0$

[MH-Itou-Kikuchi-Nagano-Okuda'21]

(difficult to explore by the conventional Monte Carlo approach)

Parameters: g = 1, a = 0.4, N = 15, T = 99, $q_p/q = 1$, m/g = 0.2

Comment on theta angle periodicity

Absence of the periodicity: $\theta_0 \sim \theta_0 + 2\pi$?

This is expected because we're taking open b.c.

To get the periodicity back, we need to take ∞ -vol. limit

<u>Massless vs</u> massive for $\theta_0 = 0 \& q_p/q \in \mathbb{Z}$

[MH-Itou-Kikuchi-Nagano-Okuda'21]

Parameters:
$$g = 1$$
, $a = 0.4$, $N = 15 \& 21$, $T = 99$, $q_p/q = 1$

Lines: analytical results in the continuum limit (finite & ∞ vols.)

Consistent w/ expected screening behavior

Results for $\theta_0 = 0 \& \frac{q_p}{q} \notin \mathbb{Z}$

[MH-Itou-Kikuchi-Nagano-Okuda'21]

Parameters: $g = 1, a = 0.4, N = 15, T = 99, q_p/q = 1/4, m = 0 \& 0.2$

Lines: analytical results in the continuum limit (finite & ∞ vol.)

"String tension" for $\theta_0 = 0$

Parameters: g = 1, a = 0.4, N = 15, T = 99, m/g = 0.2

[MH-Itou-Kikuchi-Nagano-Okuda '21]

Comment: density plots of energy gap

(known as "Tuna slice plot" inside the collaboration) [MH-Itou-Kikuchi-Nagano-Okuda'21]

Parameters: g = 1, a = 0.4, N = 15, $q_p/q = 1$, m/g = 0.15

smaller gap for larger ℓ

larger systematic error for larger ℓ

<u>N-dependence of V w/ fixed physical volume</u>

[MH-Itou-Kikuchi-Tanizaki '21]

Continuum limit of string tension

[MH-Itou-Kikuchi-Tanizaki '21]

g = 1, (Vol.) = 9.6/g, T = 99, $q_p/q = -1/3$, m = 0.15, $\theta_0 = 2\pi$

basically agrees with mass perturbation theory

Energy density @ negative tension regime

[MH-Itou-Kikuchi-Tanizaki '21]

 $g = 1, a = 0.4, N = 25, T = 99, q_p/q = -1/3, m = 0.15, \theta_0 = 2\pi$

Lower energy inside the probes!!

<u>Comparison of $q_p/q = -1/3 \& q_p/q = 2/3$ </u>

[MH-Itou-Kikuchi-Tanizaki '21]

Parameters: q = 3, g = 1, a = 0.4, N = 25, T = 99, m = 0.15

Similar slopes \rightarrow (approximate) Z_3 symmetry

<u>N-dependence of V w/ fixed physical volume</u>

[MH-Itou-Kikuchi-Tanizaki '21]

Adiabatic scheduling

[MH-Itou-Kikuchi-Tanizaki '21]

$$N = 17, ga = 0.40, m = 0.20, q_p = 2, \theta_0 = 2\pi,$$

