$\mathrm{S}=1$ スピン鎖における
 対称性に守られたトポロジカル秩序と非局所ユニタリ変換

Kouichi Okunishi（Niigata U）
with Kenji Harada（Kyoto U）
Hong Yang（U Tokyo）
Linhao Li（ISSP－＞Ghent）
Hosho Katsura（U Tokoy）

Part 1

Physics of the Kennedy-Tasaki Transformation for the SPT entanglement and the negative sign problem
"Topological disentangler for the valence-bond-solid chain"
K Okunishi
Phys. Rev. B 83, 104411 (2011)
"Symmetry-protected topological order and negative-sign problem for bilinear-biquadratic chains"
K Okunishi, K Harada, Phys. Rev. B 89, 134422 (2014)

Motivation : beginning of this research

MERA : G. Vildal: active controlling of the entanglement. real space RG + disentangler

- The disentangler is a local unitary in the MERA network.
- The disentangler is obtained as a result of the highly nontrivial numerical optimization

- Global entanglement is reduced by the disentanglers in the MERA type network.

Exact example of the disentangler for through understanding of the disentangler

Tree network = block spin tranformation

Entanglement between two blocks is maintained by only single bond!

AKLT model and VBS state: Exact MPS (1986)

$$
H=\sum S_{i} \cdot S_{i+1}+\frac{1}{3}\left(S_{i} \cdot S_{i+1}\right)^{2}=\sum P_{i, i+1}^{S=2}
$$

VBS state

$$
=1 / 2\{
$$

$$
-
$$

Z2 x Z2 symmetry and string order

Hidden antiferromagneitc order (SPT order)

$$
-0+-00+00-+0-
$$

If "0" spins are skipped, Neel type order can be recognized.
$\square(+-)$ of the edge spins generates the $\mathrm{Z} 2 \times \mathrm{Z} 2$ symmetry.
In order to detect the hidden Neel order, nonlocal string order parameter was constructed by den Nijis and Rommers.

$$
\left\langle S_{i}^{z} \exp \left(i \pi \sum_{k=i+1}^{n-1} S_{k}^{z}\right) S_{j}^{z}\right\rangle
$$

phase factor $e^{i \pi S_{k}^{z}}$ skips "0" spin and picks up string of the Neel type array of spins.

Analogy with the 2D interface system: disordered flat phase.

Kennedy-Tasaki transformation

minus sign is assigned for a state vector, if the number of 0 spin at the odd sites in the entire chain is odd
" + " or "-" spin is flipped, if there is odd number of + or - spins in the left side of a site j .

$$
(0+-00+00-+0-) \quad \square \quad-(0++00+00++0+)
$$

$$
\left|\Psi_{j}\right\rangle=\cdots\left|\phi_{j}\right\rangle \otimes\left|\phi_{j}\right\rangle \otimes\left|\phi_{j}\right\rangle \otimes \cdots \quad \text { manifest } \mathrm{Z} 2 \times \mathrm{Z} 2 \text { symmetry }
$$

$$
\begin{array}{ll}
\left|\phi_{1}\right\rangle=\sqrt{\frac{2}{3}}|+\rangle+\sqrt{\frac{1}{3}}|0\rangle & \left|\phi_{3}\right\rangle=\sqrt{\frac{2}{3}}|-\rangle+\sqrt{\frac{1}{3}}|0\rangle \\
\left|\phi_{2}\right\rangle=-\sqrt{\frac{2}{3}}|+\rangle+\sqrt{\frac{1}{3}}|0\rangle \quad\left|\phi_{4}\right\rangle=-\sqrt{\frac{2}{3}}|-\rangle+\sqrt{\frac{1}{3}}|0\rangle
\end{array}
$$

$$
|\Psi\rangle=\cdots\left|\phi_{j}\right\rangle \otimes\left|\phi_{j}\right\rangle \otimes\left|\phi_{j}\right\rangle \otimes \cdots \quad \text { Classical state }
$$

There is no quantum entanglement!

Problem

Highly nonlocal transformation.
It is difficult to handle by hand
The classical state itself was obtained by diagonalization of the KT-transformed Hamiltonian.
generalization is not straightforward...
How does the KT transformation disentangle the quantum entanglement in the VBS state?

matrix product representation

$$
|\Psi\rangle=A_{1} A_{2} A_{3} \cdots A_{N} \Omega \quad A_{j}=\left(\begin{array}{cc}
\left.-\sqrt{\frac{1}{3}} 0\right\rangle & \sqrt{\frac{2}{3}}|+\rangle \\
-\sqrt{\frac{2}{3}}|-\rangle & \sqrt{\frac{1}{3}}|0\rangle
\end{array}\right)
$$

$$
\Omega=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) \quad \begin{aligned}
& \text { boundary matrix yields linear combinations } \\
& \text { of } 4 \text { degenerating groundstates }
\end{aligned} e^{i \pi / 2 S_{j}^{y}} A_{j}=\Omega^{-1} A_{j} \Omega
$$

problem

The disentangled wavefunction is represented as a 4×4 matrix with the diagonal elements. However, matrix operation of any 2×2 matrix can never convert 2×2 into 4×4 !

1st step

Kennedy-Tasaki transformation can be represented as an assembly of the pair disentanglers

$$
\begin{aligned}
& D_{K T}:=\prod_{\text {allpairs }} D_{i, j} \\
& D_{i, j}=e^{i \pi S_{i}^{z} S_{j}^{x}} \quad\left\lfloor D_{i, j}, D_{k, l}\right\rfloor=0 \quad \text { M. Oshikawa, (1992) }
\end{aligned}
$$

equivalently

$$
\begin{aligned}
D_{i, j}=P_{i}^{0} \otimes \mathbf{1}+P_{i}^{ \pm} \otimes e^{i \pi S_{j}^{\Sigma}}=\mathbf{1} \otimes Q_{j}^{0} & +e^{i \pi S_{j}^{z}} \otimes Q_{j}^{ \pm} \\
& P_{j}^{0}=\frac{1}{2}\left(\mathbf{1}+e^{i \pi \delta J_{j}^{z}}\right), P_{j}^{ \pm}=\frac{1}{2}\left(\mathbf{1}-e^{i \pi \delta J_{j}^{z}}\right)
\end{aligned}
$$

Disentangling single site

$$
D:=\prod_{i=1}^{n-1} D_{i, n} \prod_{j=1}^{N} D_{n, j}
$$

n-th site is equally entangled with the other spins.

Heisenberg chain

Two fold degeneracy is removed in the KT transformed chain $S-\widetilde{S}=\ln 2 \quad$ topological entanglement entropy

$$
\mathrm{S}=1 \text { Heisenberg chain } H=\sum S_{i}^{x} S_{i+1}^{x}+S_{i}^{y} S_{i+1}^{y}+S_{i}^{z} S_{i+1}^{z}
$$ KT transform

$$
\widetilde{H}=\sum-S_{i}^{x} S_{i+1}^{x}-S_{i}^{y} S_{i+1}^{y}+S_{i}^{z} e^{i \pi\left(S_{i}^{z}+S_{i+1}^{x}\right)} S_{i+1}^{z}
$$

The SU(2) symmetry becomes hidden by the KT transformation.
Haldane state:
Pollman, Berg, Turner, Oshikawa, (2010)
Z2 ~ time reversal symmetry at the MPS level.
two fold degeneracy in the entanglement spectrum

DMRG for the AKLT model $\mathrm{m}=4$, parity is imposed(equivalent right and left blocks) $\mathrm{m}=2$, "canonical" MPS dimension $\mathrm{m}=1$, the KT transformed AKLT.

そこでふと考えた！

$S=1$ bilinear－biquadratic chain

$$
h_{i, i+1}=\vec{S}_{i} \cdot \vec{S}_{i+1}+\alpha\left[\left(\vec{S}_{i} \cdot \vec{S}_{i+1}\right)^{2}-1\right]
$$

Taktajian－ Babujian （integrable，gapless）

Heisenberg
AKLT （MPS）

SU（3）
（integrable，gapless）

The ground state is also well－understand by DMRG
QMC ：The region of $\alpha>0$ is the dark side； negative sign problem！

Hamiltonian : matrix elements

$$
h_{i, i+1}=\left(\begin{array}{ccc|ccc|ccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \alpha-1 & 0 & \alpha-1 & 0 & \alpha & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \alpha-1 & 0 & \alpha & 0 & \alpha-1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & \alpha & 0 & \alpha-1 & 0 & \alpha-1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

$\alpha>0$; negative sign problem

Kennedy-Tasaki Transformation U $+$
 Local unitary transformation V (dimer-R)

KT transformation : classical ground state(disentangled)

$$
\begin{array}{cl}
\left|\Psi_{j}\right\rangle=\cdots\left|\phi_{j}\right\rangle \otimes\left|\phi_{j}\right\rangle \otimes\left|\phi_{j}\right\rangle \otimes \cdots & \text { manifest Z2 x Z2 symmetry } \\
\left|\phi_{1}\right\rangle=\sqrt{\frac{2}{3}}|+\rangle+\sqrt{\frac{1}{3}}|0\rangle & \left|\phi_{3}\right\rangle=\sqrt{\frac{2}{3}}|-\rangle+\sqrt{\frac{1}{3}}|0\rangle \\
\left|\phi_{2}\right\rangle=-\sqrt{\frac{2}{3}}|+\rangle+\sqrt{\frac{1}{3}}|0\rangle & \left|\phi_{4}\right\rangle=-\sqrt{\frac{2}{3}}|-\rangle+\sqrt{\frac{1}{3}}|0\rangle
\end{array}
$$

However, a naive use of the KT transformation does not yet remove the negative sign.

local unitary transformation : V (p-wave basis)

$$
\begin{aligned}
& |1\rangle=\frac{1}{\sqrt{2}}(|+1\rangle-|-1\rangle) \\
& |2\rangle=\frac{1}{\sqrt{2}}(|+1\rangle+|-1\rangle) \\
& |3\rangle=|0\rangle
\end{aligned}
$$

$$
V=\left(\begin{array}{ccc}
1 / \sqrt{2} & 0 & -1 / \sqrt{2} \\
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
0 & 1 & 0
\end{array}\right) \quad V^{2}=I
$$

$$
\begin{aligned}
\left|\phi_{1}\right\rangle=\sqrt{\frac{1}{3}}(|1\rangle+|2\rangle+|3\rangle) & \left|\phi_{3}\right\rangle=\sqrt{\frac{1}{3}}(|1\rangle+|2\rangle-|3\rangle) \\
\left|\phi_{2}\right\rangle=\sqrt{\frac{1}{3}}(-|1\rangle+|2\rangle-|3\rangle) & \left|\phi_{4}\right\rangle=\sqrt{\frac{1}{3}}(-|1\rangle+|2\rangle+|3\rangle)
\end{aligned}
$$

T. Kennedy, J. Phys. condens matt. 6, 8015 (1994)
: Perron-frobenius theorem

KT transformation + V transformation

$$
V U h_{i, i+1} U^{-1} V^{-1}=\left(\begin{array}{ccc|ccc|ccc}
\alpha & 0 & 0 & 0 & \alpha-1 & 0 & 0 & 0 & \alpha-1 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\alpha-1 & 0 & 0 & 0 & \alpha & 0 & 0 & 0 & \alpha-1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
\alpha-1 & 0 & 0 & 0 & \alpha-1 & 0 & 0 & 0 & \alpha
\end{array}\right)
$$

This Hamiltonian has NO negative sign for $1>=\alpha$.

KT + V transformations

Physical meaning of the matrix elements

$$
\begin{aligned}
& \left\langle n_{1}^{\prime} n_{2}^{\prime}\right| \widetilde{h}_{1,2}\left|n_{1} n_{2}\right\rangle=-\Gamma_{c}-(1-\alpha) \Gamma_{h}+\alpha \Gamma_{r} \\
& \mathrm{n}=1,2,3 \text {-> } 3 \text { colors of world line }
\end{aligned}
$$

$\Gamma_{c} \quad$ exchange of particles
$\Gamma_{h} \quad$ pair creation \& anihiration of particles
$\Gamma_{r} \quad$ repulsion between particles of the same color (diagonal elements)

SU(3) matrices /Schwinger boson

$$
\Gamma^{c}=\sum_{\mu \neq \nu} S^{\mu \nu} S^{\nu \mu} \quad \Gamma^{h}=\sum_{\mu \neq \nu} S^{\mu \nu} S^{\mu \nu} \quad \Gamma^{r}=\sum_{\mu} S^{\mu \mu} S^{\mu \mu}
$$

$\approx[1,0]$ representation $\approx[1,1]$ representation
$\operatorname{SU}(3)$ algebra $\quad\left[S^{\mu \nu}, S^{\mu^{\prime} \nu^{\prime}}\right]=\delta_{v \mu \mu^{\prime}} S^{\mu \nu^{\prime}}-\delta_{\mu \nu v^{\prime}} S^{\mu^{\prime} v}$
Scwinger boson

$$
S^{\mu \nu}=b_{\mu}^{+} b_{v} \quad \text { constraint } \quad \sum_{\mu} b_{\mu}^{+} b_{\mu}=N
$$

Γ

scattering of bosonic particles

diagrammatic representation

Continuous time worm type algorithm is possible

generalized Jordan-Wigner transformation

Assign minus sign if particles of different colors are exchanged
generalized Jordan-Wigner

$$
Q=\prod_{<i, j>} Q_{i, j}
$$

Product is taken for all spin pairs
L. Messio and F. Mila, Phys. Rev. Lett. 109, 205306 (2012).

$$
Q \Gamma_{c} Q=\fallingdotseq \bigodot_{c} \quad Q \Gamma_{h} Q=\Gamma_{h} \quad Q \Gamma_{r} Q=\Gamma_{r}
$$

What is this Hamiltonian?

gJW transformation and definition rep.

H and \hat{H}

$$
\begin{aligned}
& R=\left(\begin{array}{ccc}
-i / \sqrt{2} & 0 & i / \sqrt{2} \\
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
0 & 1 & 0
\end{array}\right) \quad R \vec{S} R^{+}=\vec{L} \\
& L^{x}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right) \quad L^{y}=-\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right) \quad L^{z}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \hat{h}_{i, i+1}=\vec{L}_{i} \cdot \vec{L}_{i+1}+\alpha\left[\left(\vec{L}_{i} \cdot \vec{L}_{i+1}\right)^{2}-1\right]
\end{aligned}
$$

bilinear-biquadratic chain in the definition representation

Correlation functions

$$
\begin{aligned}
&\left\langle S_{i}^{a} S_{j}^{a}\right\rangle_{\mathcal{H}}=\left\langle L_{i}^{a} L_{j}^{a}\right\rangle_{\hat{\mathcal{H}}} \\
&=-\left\langle T_{i}^{a} e^{i \pi \sum_{i<k<j} L_{k}^{a}} T_{j}^{a}\right\rangle_{\tilde{\mathcal{H}}} \\
&=-\left\langle T_{i}^{a} e^{i \pi \sum_{i<k<j} T_{k}^{a}} T_{j}^{a}\right\rangle_{\tilde{\mathcal{H}}} \\
&\left\langle S_{i}^{a} e^{i \pi \sum_{i<k<j} S_{k}^{a}} S_{j}^{a}\right\rangle_{\mathcal{H}}=\left\langle L_{i}^{a} e^{i \pi \sum_{i<k<j} L_{k}^{a}} L_{j}^{a}\right\rangle_{\hat{\mathcal{H}}} \\
&=-\left\langle T_{i}^{a} T_{j}^{a}\right\rangle_{\tilde{\mathcal{H}}},
\end{aligned}
$$

Both of the KT and JW transformations yield the same correlation functions

$\mathrm{SO}(\mathrm{N})$ generalization

$$
\hat{h}_{i, i+1}=\sum_{b>a} L_{i}^{a b} L_{i+1}^{a b}+\frac{\alpha}{N-2}\left[\left(\sum_{b>a} L_{i}^{a b} L_{i+1}^{a b}\right)^{2}-1\right]
$$

$\mathrm{SO}(\mathrm{N})$ generator: a-b plane $\left(L^{a b}\right)_{x, y}=-i\left(\delta_{a, x} \delta_{b, y}-\delta_{b, x} \delta_{a, y}\right)$

Diagrammatic representation

$$
\hat{h}_{i, i+1}=\Gamma_{i, i+1}^{\mathrm{c}}+\alpha \Gamma_{i, i+1}^{\mathrm{r}}-(1-\alpha) \Gamma_{i, i+1}^{\mathrm{h}}
$$

Generalized Jordan-Wigner

$$
Q_{i, j}=\operatorname{diag}(1,-1 \cdots-1, \cdots 1, \cdots 1,-1 \cdots-1, \cdots 1, \cdots 1)
$$

$$
\widetilde{h}_{i, i+1}=-\Gamma^{c}-(1-\alpha) \Gamma^{h}+\alpha \Gamma^{r}
$$

The same diagram for " N - particle colors"

directed loop algorithm

Demonstration: AKLT point $\beta=1 / 3$

snap shot of world line: AKLT point $\beta=1 / 3$

String correlation

S=1 BLBQ chain/AKLT point

String correlation function

Correlation length

$$
\begin{gathered}
\xi(T) \propto \exp \left(\Delta_{\xi} / T\right) \\
\Delta_{\xi} \cong 0.875(>\Delta=0.700)
\end{gathered}
$$

summary of part1

-SO(N)
SPT entanglement can be disentangled by the KT or generalized JW transformations

Negative sign can be removed in the VBS phase.

- the number of the topological degeneracy corresponds to the number of the sign distributions in the negative-sign free representation
-Directed loop algorithm is actually formulated for the negative sign free N -color bosonic particle model.

Part 2

"Duality, criticality, anomaly, and topology in quantum spin-1 chains" Phy. Rev B 107, 125158 (2023)

$$
\begin{array}{ll}
\text { with } & \text { Hong Yang (U Tokyo) } \\
& \text { Linhao Li (ISSP -> Ghent) } \\
& \text { Hosho Katsura (U Tokoy) }
\end{array}
$$

KT transformation and duality

Interpolation between the SPT and SSB Hamiltonians

$$
\begin{aligned}
& \mathcal{H}(\lambda)=(1-\lambda) \mathcal{H}_{\mathrm{BLBQ}}+(1+\lambda) \tilde{\mathcal{H}}_{\mathrm{BLBQ}} \\
& \quad\left(\tilde{\mathcal{H}}_{\mathrm{BLBQ}}=U^{\dagger} \mathcal{H}_{\mathrm{BLBQ}} U\right)
\end{aligned}
$$

$\mathrm{KT}=$ duality transformation $\quad \mathcal{H}(-\lambda)=U^{\dagger} \mathcal{H}(\lambda) U$
selfdual point $\quad \lambda=0$

Question

How the SPT order is changed to the corresponding SSB order?

$\lambda=0 \quad$ selfdual point
decoupling of $|h\rangle=\frac{1}{\sqrt{2}}(|+1\rangle+|-1\rangle)$ states
effective $X X Z$ chain

$$
\begin{aligned}
\mathcal{H}_{\mathrm{XXZ}}= & (\cos \theta-\sin \theta) \sum_{j}\left(\sigma_{j}^{x} \sigma_{j+1}^{x}+\sigma_{j}^{y} \sigma_{j+1}^{y}\right) \\
& +\sin \theta \sum_{j} \sigma_{j}^{z} \sigma_{j+1}^{z} \quad(\theta=\arctan \alpha)
\end{aligned}
$$

For $-1<\alpha<0.5, \quad$ XY-like regime gapless ground state c=1 Gaussian CFT (Z2-Ising $\times 2$)

summary of part 2

- Selfdual BLBQ chain
- Relation between SPT and SSB orders
- Sequential phase transitions:

Ising(Z2) criticality + c=1 CFT (selfdual point)

- Selfdual point: decoupling of hole degrees of freedom
- $\alpha=1 / 2, \lambda=0:$ multicritial \rightarrow incommensurate?

