Towards tensor renormalization group study of lattice QCD

Atis Yosprakob

Department of Physics, Niigata University

November $15th$, 2024

Lattice QCD

- non-perturbative formulation for quantum chromodynamics
- 4D Euclidean $SU(3)$ gauge theory with Nf=2,3
	- ➢ Higher dimensions, Non-abelian, Multiple flavors
- MC computation suffers from the sign problem at finite θ and finite density

• MC computation also suffers from the topology freezing problem toward continuum limit

> So far, we do not have a universal method that avoids all the problems...

Tensor renormalization group (TRG)

- An alternative to Monte Carlo methods based on coarse graining
- No sampling $=$ No sign problem
- Can access large volumes with log cost
- Can handle fermion/Grassmann numbers directly; Grassmann TRG

[Figures from Okunishi-Nishino-Ueda; 2022]

Progress toward TRG study of Lattice QCD

Challenges

- TRG can be challenging when the local Hilbert space is large
- By that, I meant QCD
	- ➢ Multiple fermion flavors ==> dimension ~ exp(k*Nf*)
	- \geq Non-abelian gauge symmetry $==$ Redundancy in the TN

I will talk about my works on these two directions.

Outline

- Part I: Multi-flavor gauge theory
	- The multi-layer formulation
	- Initial tensor compression
	- Result: *finite density* N_f flavor 2D Z_N theory
- Part II: Armillary sphere formulation
	- Degeneracy in the tensor network
	- Reduced tensor network formulation
	- Result: 3D SU(2) & SU(3) thoery

Part I: Multi-layer construction for multi-flavor gauge theory

Based on [JHEP11(2023)187], with **Jun Nishimura** (KEK) and **Kouichi Okunishi** (Niigata U)

Multi-flavor gauge theory

- The number of tensor legs increases with the number of flavors
- This makes it difficult to consider multi-flavor theory in the tensor network
- This can be avoided by separating flavor d.o.f. from each other

Similar ideas:

- Domain wall fermions (flavor = extra dim)
- MPO-like decomposition (Akiyama; 2023)

Multi-flavor gauge theory

Separate the layers analytically

$$
Z = \int D\varphi \prod_{\alpha=1}^{N_{\rm f}} \left(D\varphi^{(\alpha)} D\psi^{(\alpha)} D\bar{\psi}^{(\alpha)} \right) \delta(\varphi^{(\alpha)} - \varphi) e^{\sqrt{\sum_{\alpha} S^{(\alpha)}}}
$$
\nlocal action for each flavor
\n
$$
U_{x,\mu} = \exp(iaA_{x,\mu}) \equiv \exp(i\varphi_{x,\mu})
$$
\n
$$
\downarrow \qquad \qquad S^{(\alpha)} = \frac{1}{N_{\rm f}} S_{\rm gauge}[\varphi^{(\alpha)}] + \sum_{x \in \Lambda_2} \bar{\psi}_x^{(\alpha)} \psi^{(\alpha)} \psi_x^{(\alpha)}
$$
\n
$$
\bullet
$$
\neach layer for each flavor
\nlink
\n
$$
\downarrow \qquad \qquad \bullet
$$
\nconnected via delta functions
\n
$$
\alpha = 3
$$
\n
$$
\bullet
$$
\nGrassmann tensors handle
\nfermions directly\n
$$
\alpha = 1
$$
\n9

Quick intro: Grassmann tensors

Grassmann tensor contraction

$$
C_{IJK} = \sum A_{ILK} B_{JLSJKL}
$$

$$
s_{JKL} = \sigma_L \times (-)^{p(L)(p(J) + p(K)) + p(J)p(K)}
$$

GrassmannTN: a python package for Grassmann TRG / DMRG

https://github.com/ayosprakob/grassmanntn

GrassmannTN: a python package for Grassmann TRG / DMRG

https://github.com/ayosprakob/grassmanntn

Tensor compression

Proposed compression scheme:

Isometries are first applied around the Grassmann tensor *S*: a → b Then another set is applied around the whole tensor: $b \rightarrow c$

Compression performance

Physical parameters

All of these compressions are done without any spectrum truncation! Such high performance is due to the sparse nature of fermions.

Finite density and Silver Blaze

Part II: Armillary sphere Non-abelian gauge theory in higher dimensions

Based on [PTEP 2024 (2024) 7, 073B05] (Formulation) and [arXiv:2406.16763] (Numerical) with **Kouichi Okunishi** (Niigata U)

Why is non-abelian tensor network difficult?

Internal symmetry in SU(N) is a redundancy in the tensor network that cannot be truncate by an SVD

The entanglement structure is nonlocal...

17

Character expansion

• Lesson from $1+1D$: the (matrix) index loops can be traced out if we use character expansion

[Hirasawa, Matsumoto, Nishimura, **A.Y.**; 2021]

• Degeneracy is completely eliminated

Can we do the same thing for any dimension?

Yes! There is a similar closed network in any dimension Which we call the armillary sphere

This was first noticed by [Oeckl & Pfeiffer; 2001] in the context of the spin foam model. 19

Step 1: perform character expansion on the Boltzmann weight

Step 2: perform group integral on each link variable

Note: matrix indices (thin lines) are neatly separated into two layers

Step 3: Contract the matrix indices

22

Result: singular value spectrum

Singular value spectrum of the initial tensor do not have large degeneracy

Result: average plaquette @ zero temperature

ATRG; $V = 16^3$; $D_{cut} = 16$ pure 2+1D SU(2) and SU(3) gauge theory

Average plaquette – consistent with strong coupling expansion

Result: deconfinement @ finite temperature

TRG; $V = 1 \times 1024^2$; $D_{cut} = 64$

- TRG is a promising methods for studying lattice theories
- We address 2 challenging aspects toward lattice QCD
	- ➢ Multiple fermion flavors can be handled with Grassmann Tensors with multi-layer construction
	- ➢ Degeneracy in non-abelian tensor network can be eliminated with the armillary sphere technique

Future prospects

- Can we reduce the tensor network without character expansion? (Some variation of Gilt-TNR?) [Hauru,Delcamp,Mizera; 2017]
- Armillary sphere method with matter fields?
- More in-depth analysis (physical interpretation?)
- \cdot 4D gauge theory $+$ theta term
- \bullet Ftc.