

$\text{Scattering phase shift with the tensor }\overset{\text{SVDMAND}}{\text{SVD}}\ \text{SCA}^{\text{SVDMADM}}$ renormalization group method

Fathiyya Izzatun Az-zahra¹, Shinji Takeda¹, Takeshi Yamazaki² ¹ Kanazawa University ²University of Tsukuba

PRD **110**, 034514 (2024)

TENSOR NETWORK 2024

Hadron spectroscopy and scattering phase shift

Hadron spectrum:

Energy gap $\omega_{n,q} = E_{n,q} - E_{\Omega}$ with some quantum number (n, q)

 $\widehat{H}_{QCD}|n, q\rangle = E_{n,q}|n, q\rangle$ (ex: J^{PC} , flavor, ...)

Some hadron are resonance **A** Analysed by phase shift Lüscher's formula: $e^{i2\delta(k)} = e^{-i k L}$ Phase shift **K** Relative momentum of 2-particle state **energy** with total momentum $P = 0$ [Lüscher, 1986]

2013 snowmass report

Computational method for spectroscopy and phase shift ➢ Monte carlo

$$
\lim_{T \to \infty} \langle \hat{\mathcal{O}}_q^{\dagger}(\tau) \hat{\mathcal{O}}_q(0) \rangle = \sum_{n=0}^{\infty} \left| \langle n, q | \hat{\mathcal{O}}_q(0) | \Omega \rangle \right|^2 e^{-\tau (E_{n,q} - E_{\Omega})} \quad \blacksquare
$$

Need large time extend Large statistics

➢ Transfer matrix and tensor network

Computing the energy spectrum using transfer matrix and tensor network

Identification of quantum number by tensor network

Using the symmetry of the system, matrix elements $\langle \Omega | \hat{\mathcal{O}} | a \rangle$ can be used for

 \checkmark Identification of **quantum number** \to if $\langle b|\hat{\mathcal{O}}|a\rangle \neq 0$ then $q_b q_{\hat{\mathcal{O}}} q_a = 1$ (for discrete symmetry)

Identification of momentum by tensor network

 $\Omega|\hat{\mathcal{O}}(p)|a\rangle = \langle \Omega|$ 1 $L_{\boldsymbol{\mathcal{X}}}$ \sum $x=0$ L_{χ} – 1 $\hat{\mathcal{O}}(x)e^{-ipx}$ |a) $\approx B_{0a}(p)^{\text{[hotrg]}}$ \checkmark Identification of **momentum** \to if $\langle \Omega | \hat{\mathcal{O}}(p) | a \rangle \neq 0$ then p is momentum of state $|a\rangle$

Energy spectrum and quantum number of (1+1)d Ising model

$$
T = 2.44, L_x = 64, \chi = 80
$$

0.50

Classification of quantum number:

$$
|\langle \Omega | s(0) | a \rangle| \approx |B_{0a}^{\text{[hotrg]}}|
$$

\$\Rightarrow\$ Single spin operator, $q_s = -1$

$$
\left|B_{0a}^{\text{[hotrg]}}\right| \neq 0 \quad \Longrightarrow \quad q_{\Omega}q_{s}q_{a} = 1, \quad q_{a} = -1
$$

[Kaufman, Phys. Rev. 76, (1949)]

10

 $\omega_a^{[hotrg]} - \omega_a^{[h]}$

[exact]

12 14

 $|\omega|$

[exact]

16 18 20

 $\delta \omega_a =$

6

8

Momentum of 1-particle state of (1+1)d Ising model

Scattering phase for shift (1+1)d Ising

Operator for identification 2- particle state with total momentum $P = 0$

2-particle state energy with $P = 0$ (T = 2.44, $\chi = 80$)

 $T = 2.44, L_x = 64, \chi = 80$

Summary and outlook

- ❑ By using our scheme, the energy spectrum is obtained from eigenvalues of transfer matrix which is approximated by tensor network
- ❑ The the quantum number is judged from the matrix elements of a proper operator
- ❑ The momentum of one-particle state energy can be identified
- ❑ The two-particle state energy with total momentum zero can be identified
- ❑ Using Lüscher's formula, the scattering phase shift of 2d Ising model is obtained from twoparticle state energy whose total momentum is zero
- \Box outlook: application to other lattice models, phase shift from moving frame, etc.

Appendix

Error of relative momentum and phase shift

Relative error of the relative momentum $k^{\text{[hotrg]}}$

[hotrg] Relative error of the phase shift $\delta(k)^\mathrm{[hotrg]}$

Impurity TN to compute Scattering phase shift (1+1)d Ising

Operator for identification 2- particle state with total momentum $P = 0$, $L_x = 4$

$$
|\langle \Omega | \widehat{\mathcal{O}}_2(P, p) | a \rangle| = |\langle \Omega | \frac{1}{L_x^2} \sum_{x, y = 0}^{L_x - 1} s(x) s(y) e^{-ip_1 x} e^{-ip_2 y} | a \rangle
$$

 $^{+}$

 e^{-ip_2}

 e^{-2ip_2}

 $e_1^{-3ip_2}$

 $+$

 $+$

 $e^{-3ip_1-3ip_2}$

Tensor Network Representation for Momentum of 2 −particle state

For a given P, if $\left|\left\langle\Omega\middle|\hat{\mathcal{O}}_{2}(\mathrm{P},\mathrm{p})\right.\right|$ $\left|\neq0\right\rangle\Rightarrow$ total momentum of state $\left|\mathrm{a}\right\rangle$ is P

We coarse grain $\ L^2_\chi$ tensor networks to compute $\langle \Omega \vert \widehat{\cal O}_2(P,p) \ \vert a \rangle$ by using:

Cost: $O(L_x \log L_x \chi^7)$

 n is number of coarse-graining step

Tensor Network Representation for $\langle b|\hat{\mathcal{O}}_q|a\rangle$

Transfer Matrix Spectrum by Tensor Network

 \boldsymbol{k}

 $S\phi \rightarrow S$ S' $Z = Tr[T T ...] = Tr[YY^{\dagger}YY^{\dagger} ... YY^{\dagger}] = Tr[Y^{\dagger}YY^{\dagger}Y ... Y^{\dagger}Y]$ k' Y = $= Tr[{\cal A}^{[0]}{\cal A}^{[0]} ...]$ $k \rightarrow \Diamond s$ Y † $\{S\}$ $S\bigcirc \stackrel{\cdot K}{\longrightarrow} S$ \overline{k} \overline{Q} \overline{S} = Y_1^{\prime} | \downarrow | Y^{\dagger} $\overline{\{k\}}$ $e^{\beta s s'} =$ $u_{\scriptscriptstyle{S}k}\sigma_k u_{\scriptscriptstyle{K} \scriptscriptstyle{S}'}^{\scriptscriptstyle{I}}$ $\sqrt{\sigma_k} u_k^T$ $v_{sk'} \sqrt{\sigma_{k'}}$ $\mathcal{A}^{[0]}$ \boldsymbol{k} k^\prime

Identification of quantum numbers

System with Discrete Symmetry

Ex: (1+1)d Ising Model, Sym over Z_2 , $q = \pm 1$

Let \widehat{D} be a discrete transformation operator. Discrete transformation of operator \hat{X} is

$$
\widehat{D}\widehat{X}\widehat{D}^{-1} = q_X\widehat{X}
$$

$$
\widehat{D}|a\rangle = q_a|a\rangle
$$

$$
\langle b|\hat{X}|a\rangle = \langle b|\hat{D}^{-1}\hat{D}\hat{X}\hat{D}^{-1}\hat{D}|a\rangle
$$

$$
= q_b q_X q_a \langle b|\hat{X}|a\rangle
$$

This gives us selection rule:

 $\langle \mathbf{b} | X | \mathbf{a} \rangle \neq 0 \Rightarrow q_h q_x q_{\mathbf{a}} = 1$

 q_X Assumed to be known Choose $\langle b |$ as $\langle \Omega |$ where $q_{\Omega} = +1$ Then q_a can be identified

Identification of quantum numbers

For system with Continious symmetry

- Let \widehat{Q} be a conserved charge of continious symmetry and $\left[\widehat{Q}$, $\widehat{H}\right] =0$
- If Quantum number of an operator \widehat{X} is q_X then

 $\left[\widehat{Q}, \widehat{X}\right] = q_X \widehat{X}$ *Assume* $|\Omega\rangle$ *has no charge* \widehat{Q} $|\Omega\rangle = 0$, $\widehat{Q}\widehat{X}|\Omega\rangle = q_{\overline{X}}\widehat{X}|\Omega\rangle$

For energy eigenstate $|a\rangle$, $|b\rangle$ $\langle b|(\hat{O}\hat{X} - \hat{X}\hat{O})|a \rangle = \langle b|q_X\hat{X}|a \rangle$

$$
(q_a - q_b - q_x)(b|\hat{X}|a) = 0
$$

Selection Rule:
If $\langle b|\hat{X}|a \rangle \neq 0$, then $(q_a - q_b - q_x) = 0$
If $\langle b| = \langle \Omega |$ then $q_a = q_x$