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Hadron spectroscopy and scattering phase shift

Hadron spectrum:

෡𝐻𝑄𝐶𝐷 𝑛, 𝑞 = 𝐸𝑛,𝑞|𝑛, 𝑞⟩

Energy gap 𝜔𝑛,𝑞 = 𝐸𝑛,𝑞 − 𝐸Ω with some quantum number (𝑛, 𝑞)

Some hadron are resonance Analysed by phase shift

Lüscher’s formula: 𝑒𝑖2𝛿(𝑘)= 𝑒−𝑖𝑘𝐿

Phase shift Relative momentum of 2-particle state 
energy with total momentum 𝑃 = 0 2013 snowmass report

Computational method for spectroscopy and phase shift
➢ Monte carlo 

lim
𝑇→∞

෠𝒪𝑞
† 𝜏 ෠𝒪𝑞 0 = ෍

𝑛=0

∞

𝑛, 𝑞 ෠𝒪𝑞 0 Ω
2

𝑒−𝜏(𝐸𝑛,𝑞−𝐸Ω)

➢ Transfer matrix and tensor network

Need large time extend
Large statistics

(ex: 𝐽𝑃𝐶  , flavor, …)

[Lüscher, 1986]



Computing the energy spectrum using transfer matrix and tensor network
𝒜[𝑛]

𝐝𝐢𝐦 𝓣 = 𝟐𝑳𝒙

𝒜[0]

𝒜 = 𝑊𝜆𝑊†

𝒜[0]

𝐿𝜏

𝐿𝑥

𝒯 = 𝑈𝜆𝑈† = 𝑈𝑒−𝐸𝑈†

𝒜[𝑛] = 𝑊[𝑛]𝜆[𝑛]𝑊[𝑛]†

Diagonalize

𝜔𝑎
[𝑛]

=
1

𝐿𝜏
log

𝜆0
[𝑛]

𝜆𝑎
[0]

≈ 𝜔𝑎
[exact]

Approximate eigenvalues of 𝒜𝐿𝜏  

Approximation of 𝜔𝑎
[exact]

= 𝐸𝑎 − 𝐸0

𝑎 = 1,2,3, … , 𝜒2 

Coarse graining  
by HOTRG

HOTRG

𝒯 = 𝑈𝜆𝑈†

𝑍 = Tr

𝒯 𝒯 𝒯 𝒯

[Z. Y. Xie, PRB 86 ,2012]
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Identification of quantum number by tensor network 
Using the symmetry of the system, matrix elements Ω ෠𝒪 𝑎  can be used for
✓ Identification of quantum number → if b ෠𝒪 𝑎 ≠ 0 then 𝑞b𝑞 ෠𝒪𝑞𝑎 = 1 (for discrete symmetry)

⟨𝒃|෡𝓞 𝒂 = 𝜆−(𝑚−
1
2

)𝑊†𝒜𝑚−1𝒜′𝒜𝑚𝑊𝜆−(𝑚+
1
2

)
𝑏𝑎

𝒜 = 𝑊𝜆𝑊†

𝒜𝑚−1

𝑚 =
𝐿𝜏

2

After Coarse graining by HOTRG

≈ 𝜆 𝑛 −
1

𝐿𝜏
𝑚−

1
2 W 𝑛 †

𝒜′ 𝑛
𝑊 𝑛 𝜆 𝑛 −

1
𝐿𝜏

𝑚+
1
2

𝑏𝑎
= 𝑩𝒃𝒂

[𝐡𝐨𝐭𝐫𝐠]

𝒜[𝑛]

𝒜[𝑛] = 𝑊[𝑛]𝜆[𝑛]𝑊[𝑛]†

𝒜′
𝒜𝑚

𝒜′[𝑛]

෡𝓞

෡𝓞

Impurity tensor network 
for single operator ෡𝓞

Pure tensor network



Ω ෠𝒪 (𝑝) 𝑎 = ⟨Ω|
1

𝐿𝑥
෍

𝑥=0

𝐿𝑥−1

 ෠𝒪 𝑥 𝑒−𝑖𝑝𝑥 𝑎 ≈ 𝐵0𝑎 𝑝 [hotrg]

= +

× 𝑒−𝑖𝑝2𝑛−1

=

Coarse-graining Ω ෠𝒪 (𝑝) 𝑎  , 
Cost: 𝑂(log 𝐿𝑥 𝜒7)

[S. Morita, N. Kawashima, 2019] 

Identification of momentum by tensor network
✓ Identification of momentum → if Ω ෠𝒪(𝑝) 𝑎 ≠ 0 then 𝑝 is momentum of state |𝑎⟩

Ω ෠𝒪 1 𝑎 𝑒−𝑖𝑝 + Ω ෠𝒪 2 𝑎 𝑒−𝑖2𝑝 + + Ω ෠𝒪 𝐿𝑥 − 1 𝑎 𝑒−𝑖(𝐿𝑥−1)𝑝 

+ + + +…

× 𝑒−𝑖𝑝 × 𝑒−𝑖2𝑝 × 𝑒−𝑖(𝐿𝑥−1)𝑝

Ω ෠𝒪 0 𝑎 + 

𝑥 = 0

𝑥 = 1

⋮ Cost: 𝑂(𝐿𝑥 𝜒7)



Energy spectrum and quantum 
number of (1+1)d Ising model

Classification of quantum number:

𝑞Ω𝑞𝑠𝑞𝑎 = 1,𝐵0𝑎
hotrg

≠ 0
𝒒𝒂 = −𝟏

| Ω 𝑠(0) 𝑎 | ≈ |𝐵0𝑎
hotrg

|

Single spin operator , 𝑞𝑠 = −1

+1 −1

𝐵
0

𝑎[h
o

tr
g

]

𝛿𝜔𝑎 =
𝜔𝑎

ℎotrg
− 𝜔𝑎

exact

|𝜔𝑎
exact

|

𝛿
𝜔

𝑎

10−5

10−4

10−3

[Kaufman, Phys. Rev. 76, (1949)]

𝑇 = 2.44, 𝐿𝑥 = 64, 𝜒 = 80

𝜔
𝑎[ℎ

𝑜
𝑡𝑟

𝑔
]

𝑎



Momentum of 1-particle state of (1+1)d Ising model
Identification of momentum of 1- particle state (𝑞 = −1 sector)

if |⟨Ω|
1

𝐿𝑥
σ𝑥=0

𝐿𝑥−1
𝑠(𝑥)𝑒−𝑖𝑝𝑥 𝑎 | ≠ 0, 𝑝 is momentum of |𝑎⟩

Coarse grained by HOTRG

𝜔
𝑎h

o
tr

g
[]

𝑎

|𝑝| = 0

|𝑝| =
2𝜋

𝐿𝑥

|𝑝| =
4𝜋

𝐿𝑥

|𝑝| =
6𝜋

𝐿𝑥

|𝑝| =
8𝜋

𝐿𝑥

|𝑝| = 0

Continuum:
𝜔 = 𝑚2 + 𝑝2

Lattice:
𝜔 = cosh−1(1 − cos 𝑝 + cosh 𝑚)

Dispersion relation

ω

𝑝
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Scattering phase for shift (1+1)d Ising 
Operator for identification 2- particle state with total momentum 𝑷 = 𝟎

| Ω ෡𝓞𝟐 𝑷, 𝒑 𝑎 | = |⟨Ω|
𝟏

𝑳𝒙
𝟐 ෍

𝒙,𝒚=𝟎

𝑳𝒙−𝟏

𝒔 𝒙 𝒔 𝒚 𝒆−𝒊𝒑𝟏𝒙𝒆−𝒊𝒑𝟐𝒚 |𝑎⟩

Coarse grained by HOTRG

relative 
momentum

• 𝑃 = 𝑝1 + 𝑝2

• 𝑝 =
𝑝1−𝑝2

2

𝑇 = 2.44, 𝐿𝑥 = 64, 𝜒 = 80

𝜔
𝑎[ℎ

𝑜
𝑡𝑟

𝑔
]

2-particles state 
with 𝑃 = 0

𝜔6

𝜔13

𝑎



Scattering phase shift for (1 + 1)d Ising 
Lüscher’s formula,

𝒆𝒊𝟐𝜹(𝒌) = 𝒆−𝒊𝒌𝑳𝒙

Phase shift

Relative 
momentum

𝛿ising = −
𝜋

2
 [C. R. Gattringer,1993]

𝜔 = 2 𝑘2 + 𝑚2

infinite volume limit 
exact rest mass 

𝑚 = 0.12621870
Relative 
momentum

Elastic
inelastic

δ

Elastic region 
2𝑚 ≤ 𝜔 < 4𝑚



Summary and outlook

❑ By using our scheme, the energy spectrum is obtained from eigenvalues of transfer matrix 

which is approximated by tensor network

❑ The the quantum number  is judged from the matrix elements of a proper operator

❑ The momentum of one-particle state energy can be identified

❑ The two-particle state energy with total momentum zero can be  identified

❑ Using Lüscher’s formula, the scattering phase shift of 2d Ising model is obtained from two-

particle state energy whose total momentum is zero

❑ outlook: application to other lattice models, phase shift from moving frame, etc. 



Appendix



Error of relative momentum and phase shift

Relative error of the relative momentum 𝑘[hotrg] Relative error of the phase shift 𝛿(𝑘)[hotrg]



Impurity TN to compute Scattering phase shift (1+1)d Ising 
Operator for identification 2- particle state with total momentum 𝑃 = 0 , 𝐿𝑥 = 4

| Ω ෡𝓞𝟐 𝑷, 𝒑 𝑎 | = |⟨Ω|
𝟏

𝑳𝒙
𝟐 ෍

𝒙,𝒚=𝟎

𝑳𝒙−𝟏

𝒔 𝒙 𝒔 𝒚 𝒆−𝒊𝒑𝟏𝒙𝒆−𝒊𝒑𝟐𝒚 |𝑎⟩



Tensor Network Representation for Momentum of 2 −particle state

| Ω ෠𝒪2 𝑃, 𝑝  𝑎 | = |⟨Ω|
1

𝐿𝑥
2 ෍

𝑥,𝑦=0

𝐿𝑥−1

𝑠 𝑥 𝑠(𝑦)𝑒−𝑖𝑝1𝑥𝑒−𝑖𝑝2𝑦 𝑎 |

𝑝1 =
2𝜋𝑛1

𝐿𝑥
 𝑝2 =

2𝜋𝑛2

𝐿𝑥
       

𝑃 = 𝑝1 + 𝑝2      total momentum
𝑝 =

𝑝1−𝑝2

2
           relative momentum

= =+ + +

× 𝑒−𝑖(𝑝1+𝑝2)2𝑛−1

× 𝑒−𝑖𝑝22𝑛−1 × 𝑒−𝑖𝑝12𝑛−1

𝑛 is number of coarse-graining step

Momentum operator for 2-particle state

For a given P, if Ω ෠𝒪2 P, p  a ≠ 0 ⟹ total momentum of state |a⟩ is P  

We coarse grain 𝐿𝑥
2  tensor networks to compute Ω ෠𝒪2 𝑃, 𝑝  𝑎  by using:

Cost: 𝑂(𝐿𝑥 log 𝐿𝑥 𝜒7)



Tensor Network Representation for  ⟨𝑏| ෠𝒪𝑞|𝑎⟩

𝑏 ෠𝒪𝑞 𝑎 = 𝑈† ෠𝒪𝑞𝑈
𝑏𝑎

= 𝑈†𝒯−𝑚𝒯𝑚 ෠𝒪𝑞𝒯 𝑚+1 𝒯− 𝑚+1 𝑈
𝑏𝑎

Using 𝒯 𝒯−1 = 𝐼  
𝑚 = 𝐿𝜏/2 ( ෠𝒪𝑞 is in the middle of square lattice)

𝑈𝜆−𝑚𝑈†

Y𝑌† 𝑚
Y𝑌† 𝑚+1 𝑈𝜆−(𝑚+1)𝑈†

= 𝜆−(𝑚−
1
2

)𝑊†𝒜𝑚−1𝒜′𝒜𝑚𝑊𝜆−(𝑚+
1
2

)
𝑏𝑎

Impurity Tensor Network

𝒜′
𝒜𝑚−1

𝒜𝑚

𝒜 = 𝑊𝜆𝑊†

All terms are obtained from Tensor Network

= 𝜆−𝑚𝑈†𝑌 𝑌†𝑌
𝑚−1

𝑌† ෠𝒪𝑞𝑌 𝑌†𝑌
𝑚

𝑌†𝑈𝜆−(𝑚+1)

𝑏𝑎

𝑈 𝜆𝑊† 𝒜 𝒜𝒜′ 𝑈† 𝜆𝑊

𝒯 = 𝑈𝜆𝑈†



Transfer Matrix Spectrum by Tensor Network

𝑠 𝑠′

𝑍 = 𝑇𝑟[𝒯 𝒯 … ] = 𝑇𝑟[𝑌𝑌†𝑌𝑌† … 𝑌𝑌†]

𝑘′

𝑌

=

= 𝑇𝑟[𝒜 0 𝒜[0] … ]

𝑠𝑘

𝑌†

{ }

𝑠 𝑠′𝑘

=

𝑌 𝑌†

{ }

𝑒𝛽𝑠𝑠′ = ෍

𝑘

𝑢𝑠𝑘𝜎𝑘𝑢𝑘𝑠′
𝑇 √𝜎𝑘𝑢𝑘𝑠

𝑇 𝑢𝑠𝑘′√𝜎𝑘′

𝒜[0] 

𝑘 𝑘′

= 𝑇𝑟[𝑌† 𝑌𝑌†𝑌 … 𝑌†𝑌]



Identification of quantum numbers

System with Discrete Symmetry

Ex: (1+1)d Ising Model, Sym over 𝑍2, 𝑞 = ±1

Let ෡𝐷 be a discrete transformation operator.

Discrete transformation of operator ෠𝑋 is  

෡𝐷 ෠𝑋 ෡𝐷−1 = 𝑞𝑋
෠𝑋

෡𝐷 𝑎 = 𝑞𝑎|𝑎⟩

b ෠𝑋 𝑎 = b ෡𝐷−1 ෡𝐷 ෠𝑋 ෡𝐷−1 ෡𝐷 𝑎  

                 = 𝑞𝑏𝑞𝑋 𝑞𝑎 𝑏 ෠𝑋 𝑎  

This gives us selection rule:

𝐛 𝑿 𝒂 ≠ 𝟎 ⇒ 𝒒𝒃𝒒𝑿𝒒𝒂 = 𝟏 

𝑞𝑋 Assumed to be known
Choose ⟨𝑏| as ⟨Ω| where 𝑞Ω = +1

Then 𝑞𝑎  can be identified



Identification of quantum numbers 

For system with Continious symmetry
• Let ෡𝑄 be a conserved charge of 

continious symmetry and ෡𝑄 , ෢𝐻 = 0

• If Quantum number of an operator ෡𝑋 is 
𝑞𝑋  then 

෡𝑄 , ෡𝑋 = 𝑞𝑋
෡𝑋 

Assume |𝛺⟩ has no charge ෡𝑄 𝛺 = 0 ,  
෠𝑄 ෠𝑋 Ω = 𝑞𝑋

෡𝑋 |Ω⟩

For energy eigenstate 𝑎 , |𝑏⟩
⟨𝑏|( ෠𝑄 ෠𝑋 − ෠𝑋 ෠𝑄)|𝑎⟩ = ⟨𝑏|𝑞𝑋

෡𝑋 |𝑎⟩

(𝑞𝑎−𝑞𝑏 − 𝑞𝑋)⟨𝑏| ෡𝑋 |𝑎⟩ = 0
Selection Rule:
If 𝑏 ෡𝑋 𝑎 ≠ 0, then (𝑞𝑎−𝑞𝑏 − 𝑞𝑋) = 0
If 𝑏 = Ω  then 𝑞𝑎 = 𝑞𝑋
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