

Scattering phase shift with the tensor renormalization group method

Fathiyya Izzatun Az-zahra¹ ,Shinji Takeda¹ , Takeshi Yamazaki² ¹ Kanazawa University ² University of Tsukuba

PRD 110, 034514 (2024)

TENSOR NETWORK 2024

Hadron spectroscopy and scattering phase shift

Hadron spectrum:

Energy gap $\omega_{n,q} = E_{n,q} - E_{\Omega}$ with some quantum number (n,q)

 $(ex: J^{PC} , flavor, ...)$ $\widehat{H}_{QCD} |n,q\rangle = E_{n,q} |n,q\rangle$

Some hadron are resonance Analysed by phase shift Lüscher's formula: $e^{i2\delta(k)} = e^{-ikL}$ [Lüscher, 1986] Phase shift Relative momentum of 2-particle state energy with total momentum P = 0

2013 snowmass report

Computational method for spectroscopy and phase shift > Monte carlo

$$\lim_{T \to \infty} \langle \hat{\mathcal{O}}_q^{\dagger}(\tau) \hat{\mathcal{O}}_q(0) \rangle = \sum_{n=0}^{\infty} |\langle n, q | \hat{\mathcal{O}}_q(0) | \Omega \rangle|^2 e^{-\tau (E_{n,q} - E_{\Omega})} \blacksquare$$

Need large time extend Large statistics

Transfer matrix and tensor network

Computing the energy spectrum using transfer matrix and tensor network

Identification of quantum number by tensor network

Using the symmetry of the system, matrix elements $\langle \Omega | \hat{\mathcal{O}} | a \rangle$ can be used for

✓ Identification of **quantum number** → if $\langle b | \hat{O} | a \rangle \neq 0$ then $q_b q_{\hat{O}} q_a = 1$ (for discrete symmetry)

Identification of momentum by tensor network

Identification of **momentum** \rightarrow if $\langle \Omega | \hat{\mathcal{O}}(p) | a \rangle \neq 0$ then p is momentum of state $| a \rangle$ \checkmark $\langle \Omega | \hat{\mathcal{O}}(p) | a \rangle = \langle \Omega | \frac{1}{L_{x}} \sum_{x=0}^{L_{x}-1} \hat{\mathcal{O}}(x) e^{-ipx} | a \rangle \approx B_{0a}(p)^{[\text{hotrg}]}$ $\times e^{-i(L_x-1)p}$ $\times e^{-i2p}$ $\times e^{-ip}$ Cost: $O(L_{\chi} \chi^7)$ ++++x = 1x = 0 $\langle \Omega | \hat{\mathcal{O}}(2) | a \rangle e^{-i2p} +$ $\langle \Omega | \hat{\mathcal{O}}(1) | a \rangle e^{-ip} +$ $\langle \Omega | \hat{\mathcal{O}}(0) | a \rangle +$ $+\langle \Omega | \hat{\mathcal{O}}(L_{\chi}-1) | a \rangle e^{-i(L_{\chi}-1)p}$ Coarse-graining $\langle \Omega | \hat{\mathcal{O}} (p) | a \rangle$, [S. Morita, N. Kawashima, 2019] Cost: $O(\log L_{\chi} \chi^7)$ $\times e^{-ip2^{n-1}}$ +

Energy spectrum and quantum number of (1+1)d Ising model

$$T = 2.44, L_{\chi} = 64, \chi = 80$$

Classification of quantum number:

$$|\langle \Omega | s(0) | a \rangle| \approx |B_{0a}^{[\text{hotrg}]}|$$

 \searrow Single spin operator, $q_s = -1$

2

4

 $\delta \omega_a =$

6

8

10

 $\omega_a^{[hotrg]}$

а

[Kaufman, Phys. Rev. 76, (1949)]

 ω

12 14 16 18 20

 $\omega_a^{[exact]}$

[exact]

Momentum of 1-particle state of (1+1)d Ising model

Scattering phase for shift (1+1)d Ising

Operator for identification 2- particle state with total momentum P = 0

2-particle state energy with P=0 (T=2.44 , $\chi=80$)

L_x	a	$\omega_a^{[ext{hotrg}]}$	$\langle \Omega \mathcal{O}_2(0,0) a angle$	$\langle \Omega \mathcal{O}_2(2\pi/L_x,\pi/L_x) a \rangle$
8	4	0.814585	0.37740	$< 10^{-15}$
	19	2.133922	0.07730	$< 10^{-12}$
16	4	0.465348	0.31004	$< 10^{-15}$
	18	1.171480	0.06904	$< 10^{-12}$
32	4	0.319553	0.21122	$< 10^{-14}$
	14	0.636356	0.04705	$< 10^{-10}$
64	6	0.270836	0.12007	$< 10^{-14}$
	13	0.387849	0.03007	$< 10^{-9}$

 $P=0, p=0 \qquad P\neq 0$

$$T = 2.44, L_{\chi} = 64, \chi = 80$$

So	cat	eri	ngphas	se shift for $(1+1)$)d	lsir	ıg		Relative momentum
							Lüscher's fo $e^{i2\delta_{(i)}}$	ormula, $^{k)} = e^{-i}$	kL _x
	L_x	a	$\omega_a^{[ext{hotrg}]}$	-			Phase	e shift	
	8	4	0.814585	-		-14			
		19	2.133922			-1.4	elastic ● inelastic ○	I	
	16	4	0.465348	-			-π/2		0
		18	1.171480	Elastic region		-1.45	-	·	_
	32	4	0.319553	$2m \le \omega < 4m$			Elastic	inelasti	<u> </u>
		14	0.636356		λ	-1.5	_		_
	64	6	0.270836	-	U		0		
		13	0.387849			-1.55	-	O	_
							• • • •		
		_ [-1.6			
	$\omega =$	2	$k^{2} + m^{2}$				0 1 2	3 k/m	4 5
		-		infinite volume limit					
		R		m = 0.12621870		δ	$f_{ising} = -\frac{\pi}{2} [C, R]$	Gattringer	.19931
		111	onentum			Ū	13111g 2		/ 1

Summary and outlook

- By using our scheme, the energy spectrum is obtained from eigenvalues of transfer matrix which is approximated by tensor network
- The the quantum number is judged from the matrix elements of a proper operator
- □ The momentum of one-particle state energy can be identified
- The two-particle state energy with total momentum zero can be identified
- Using Lüscher's formula, the scattering phase shift of 2d Ising model is obtained from twoparticle state energy whose total momentum is zero
- outlook: application to other lattice models, phase shift from moving frame, etc.

Appendix

Error of relative momentum and phase shift

L_x	a	$k^{[m hotrg]}$	$k^{[\mathrm{exact}]}$	δk
8	0	0.387241735	0.387241735	0
	1	1.059468963	1.059468963	0
16	0	0.195463359	0.195463359	0
	1	0.571978995	0.57197883	3×10^{-7}
32	0	0.097966346	0.097966084	3×10^{-6}
	1	0.292071859	0.292034069	0.000129
64	0	0.049059827	0.049012477	0.000966
	1	0.147225924	0.146802317	0.002885

Relative error of the relative momentum $k^{[hotrg]}$

L_x	a	$\delta(k)^{[ext{hotrg}]}$	$\delta(k)^{[ext{exact}]}$	$\Delta\delta(k)$
8	0	-1.5489669	-1.5489669	0
	1	-1.0962832	-1.0962832	0
16	0	-1.5637069	-1.5637069	0
	1	-1.4342393	-1.4342393	9×10^{-7}
32	0	-1.5674615	-1.5674573	3×10^{-6}
	1	-1.5315571	-1.5315571	0.000394
64	0	-1.5699145	-1.5683993	0.000966
	1	-1.5696369	-1.5560815	0.008711

Relative error of the phase shift $\delta(k)^{[hotrg]}$

Impurity TN to compute Scattering phase shift (1+1)d Ising

Operator for identification 2- particle state with total momentum P=0 , $L_{\chi}=4$

$$|\langle \Omega | \widehat{\mathcal{O}}_2(\boldsymbol{P}, \boldsymbol{p}) | a \rangle| = |\langle \Omega | \frac{1}{L_x^2} \sum_{x,y=0}^{L_x-1} s(x) s(y) e^{-ip_1 x} e^{-ip_2 y} | a \rangle$$

+

+

+

 $e^{-3ip_1-2ip_2}$

+

+

 e^{-2ip_2}

 $e_{1}^{-3ip_{2}}$

Tensor Network Representation for Momentum of 2 - particle state

For a given P, if $|\langle \Omega | \hat{\partial}_2(\mathbf{P}, \mathbf{p}) | a \rangle| \neq 0 \implies$ total momentum of state $| a \rangle$ is P

We coarse grain L^2_{χ} tensor networks to compute $\langle \Omega | \hat{\mathcal{O}}_2(P, p) | a \rangle$ by using:

Cost: $O(L_x \log L_x \chi^7)$

n is number of coarse-graining step

Tensor Network Representation for $\langle b | \hat{\mathcal{O}}_a | a \rangle$

Impurity Tensor Network

Transfer Matrix Spectrum by Tensor Network

 $Z = Tr[\mathcal{T} \mathcal{T} \dots] = Tr[\mathbf{Y}^{\dagger}YY^{\dagger} \dots YY^{\dagger}] = Tr[Y^{\dagger}YY^{\dagger}Y \dots Y^{\dagger}Y]$ $= Tr[\mathcal{A}^{[0]}\mathcal{A}^{[0]}\dots]$ $\left(\begin{array}{c} Y \end{array} \right) Y^{\dagger}$ $\mathcal{A}^{[0]}$ $\{k\}$ ks'S'S S(k -' S O k $u_{sk'}\sqrt{\sigma_{k'}}$ $e^{\beta s s \prime} =$ $\sqrt{\sigma_k u_{ks}^T}$ $u_{sk}\sigma_k u_{ks'}^T$

Identification of quantum numbers

System with Discrete Symmetry

Ex: (1+1)d Ising Model, Sym over Z_2 , $q = \pm 1$

Let \widehat{D} be a discrete transformation operator. Discrete transformation of operator \widehat{X} is

$$\widehat{D}\widehat{X}\widehat{D}^{-1} = q_X\widehat{X}$$
$$\widehat{D}|a\rangle = q_a|a\rangle$$

This gives us selection rule:

 $\langle \mathbf{b}|X|a\rangle \neq \mathbf{0} \Rightarrow \boldsymbol{q}_{b}\boldsymbol{q}_{X}\boldsymbol{q}_{a} = \mathbf{1}$

 q_X Assumed to be known Choose $\langle b |$ as $\langle \Omega |$ where $q_\Omega = +1$ Then q_a can be identified

Identification of quantum numbers

For system with Continious symmetry

- Let \widehat{Q} be a conserved charge of continious symmetry and $[\widehat{Q}, \widehat{H}] = 0$
- If Quantum number of an operator \widehat{X} is q_X then

 $\begin{bmatrix} \widehat{Q} , \widehat{X} \end{bmatrix} = q_X \widehat{X} \\ \text{Assume } |\Omega\rangle \text{ has no charge } \widehat{Q} |\Omega\rangle = 0 , \\ \widehat{Q} \widehat{X} |\Omega\rangle = q_X \widehat{X} |\Omega\rangle$

For energy eigenstate $|a\rangle$, $|b\rangle$ $\langle b|(\hat{Q}\hat{X} - \hat{X}\hat{Q})|a\rangle = \langle b|q_X\hat{X}|a\rangle$

$$(q_a - q_b - q_X) \langle b | \widehat{X} | a \rangle = 0$$

Selection Rule:
If $\langle b | \widehat{X} | a \rangle \neq 0$, then $(q_a - q_b - q_X) = 0$
If $\langle b | = \langle \Omega |$ then $q_a = q_X$