Workshop: Tensor network 2024 (Kanazawa)

Tensor tree learns hidden relational structure in data to construct generative models

Graduate School of Informatics, Kyoto University Kenji Harada

Collaborators: Tsuyoshi Okubo (Univ. of Tokyo), Naoki Kawashima (ISSP)

Nov. 16, 2024

This study is supported by **TOYOTA**

Applications of TN techniques to machine learning

Tensor decomposition in machine learning algorithms

• Tensor train (= MPS: matrix product state)

I.V. Oseledets, "Tensor-Train Decomposition," (2011).

- Compression of tensor in machine learning algorithms E. Stoudenmire, and D.J. Schwab, "Supervised Learning with Tensor Networks," (2016).
- Quantics tensor train

$$x = x_N \times 2^{N-1} + x_{N-1} \times 2^{N-2} + \dots + x_2 \times 2 + x_1$$

Tensorization $\Rightarrow x \rightarrow (x_N, x_{N-1}, \dots, x_1)$

- Images: Latorre (2005), ...
- NN: Novikov, et al. (2015), ...

The number of TN applications rapidly grows in machine learning!

Generative modeling is an important technique in machine learning

Generative modeling involves creating a classical distribution model behind data.

Model of a distribution with parameters heta

Models for generative modeling

Models for generative modeling

- Boltzmann machine and restricted Boltzmann machine (RBM)
- Variational autoencoder (VAE)
- Generative adversarial network (GAN)
- Normalizing flow
- Diffusion model

Born machine

Based on projective measurements of

a quantum state

$$p(\mathbf{x}) = |\psi(\mathbf{x})|^2$$

Z.-Y. Han, J. Wang, H. Fan, L. Wang, and P. Zhang, Phys. Rev. X **8**, 031012 (2018).

Diffusion process

Two approaches for the Born machine

Tensor network model (TN)

- Song Cheng, Lei Wang, T. Xiang, and Pan Zhang, "Tree tensor networks for generative modeling," Physical Review B, 99, 155131(2019).

Parametrized quantum circuit model (PQC)

- Jin-Guo Liu and Lei Wang, "Differentiable learning of quantum circuit Born machines," Physical Review A, 98, 062324(2018).
- Brian Coyle, et al., "The Born supremacy: quantum advantage and training of an Ising Born machine," npj Quantum Information, 6, 60(2020).
- Marcello Benedetti, et al., "Variational Inference with a Quantum Computer," Physical Review Applied, 16, 044057(2021).
- Manuel S Rudolph, et al., "Synergistic pretraining of parametrized quantum circuits via tensor networks," Nature Communications, 14, 8367(2023).
- Mohamed Hibat-Allah, et al., "A framework for demonstrating practical quantum advantage," Communications Physics, 7, 68(2024).

• Zhao-Yu Han, Jun Wang, Heng Fan, Lei Wang, and Pan Zhang, "Unsupervised Generative Modeling Using Matrix Product States," Physical Review X, 8, 031012(2018).

MERA, PEPS, ...

• Marcello Benedetti, et al., "A generative modeling approach for benchmarking and training shallow quantum circuits," npj Quantum Information, 5, 45(2019).

Synergistic pretraining of parametrized quantum circuits via tensor networks

Manuel S Rudolph, et al., Nature Communications, 14, 8367(2023).

Synergistic approach by TN and PQC

Time on Classical Hardware

Time on Quantum Hardware

The synergistic approach resolves the issue of the prevalence of barren plateaus in PQC optimization landscapes

Network structure and performance

Loss function

Negative Log-likelihood (NLL) = KL-divergence - entropy of data

$$\mathcal{L} = -\frac{1}{|\mathcal{T}|} \sum_{\mathbf{x}\in\mathcal{T}} \ln[p(\mathbf{x})] = -\frac{1}{|\mathcal{T}|} \sum_{\mathbf{x}\in\mathcal{T}} \ln|\Psi(\mathbf{x})|$$

TN of the quantum state for the Borm machine

The binary tree reaches the optimal value of NLL.

S. Cheng, L. Wang, T. Xiang, and P. Zhang, Phys. Rev. B, 99, 155131(2019).

Use of prior knowledge of data

Ex. Images of hand-written digits

k structure with good performance

data, how can we design a good network structure?

Optimizing a tensor network structure

Usually, we first fix a tensor network structure.

aligns with local interactions on a lattice.

However, we often have **no prior** knowledge of data.

Our goal

Optimizing a tensor network structure for generative modeling without prior knowledge of data.

- In the case of the ground-state calculation, the network structure
 - Ex. 1D model \Rightarrow MPS, 2D model \Rightarrow PEPS

Optimization of network structure for a ground-state calculation

In the class of **general tree** TNs

Based on a two-sites algorithm of DMRG

Select a new decomposition with the least entanglement entropy Step III

T. Hikihara, H. Ueda, K. Okunishi, K.H., and T. Nishino, Phys. Rev. Research 5, 013031 (2023)

Truncation is small

Results of optimization of network structure for a ground-state calculation

Visualization of entanglement structure

Inhomogeneous AFH

 $\alpha J \alpha^2 J \alpha J \alpha^3 J \alpha J \alpha^2 J \alpha J$ JJJJJJJ

Improvement of variational energies

T. Hikihara, H. Ueda, K. Okunishi, K.H., and T. Nishino, Phys. Rev. Research 5, 013031 (2023)

$$I(A:B) = \sum_{(a,b)} P(a,b) \ln \left[\frac{P(a,b)}{P(a)P(b)} \right]$$

Classical mutual information and entanglement

$$I(A:B) = \sum_{(a,b)} P(a,b) \ln \left[\frac{P(a,b)}{P(a)P(b)}\right] \leq \frac{1}{2}$$

Classical mutual information and entanglement

Entanglement entropy

 \leq E.E.

$$I(A:B) = \sum_{(a,b)} P(a,b) \ln \left[\frac{P(a,b)}{P(a)P(b)}\right] \leq \frac{1}{2}$$

Classical mutual information and entanglement

Entanglement entropy

$\leq \text{E.E.} \leq \ln(D)$ in a tree

$$I(A:B) = \sum_{(a,b)} P(a,b) \ln \left[\frac{P(a,b)}{P(a)P(b)}\right] \leq \frac{1}{2}$$

Classical mutual information and entanglement

Selecting a new decomposition with the least classical mutual information

Adaptive tensor tree generative modeling

In the class of **general tree** TNs

K.H., Tsuyoshi Okubo and Naoki Kawashima, arXiv:2408.10669

Select a new decomposition with the least classical mutual information

Stochastic estimation of mutual information

Probabilities for a distribution and marginal distributions can be calculated for a tree TN.

Four applications of the ATT method

- Ten random bit sequences with long-range correlations Images of hand-written digits (QMNIST)
- Bayesian networks
- Stock-price fluctuations in the S&P 500 index

Tensor tree learns hidden relational structure in data to construct generative models

Application to random bit sequences with long-correlations

Application to images of digits

Data with a random permutation of pixels

Results of NLL

The ATT method automatically learns the relevant relational structure among the random variables and places them close together on the tensor network

Optimized network structure

Application to Bayesian network's data

Graphical model (Bayesian network)

$$P_{\text{data}}(\mathbf{x}) = \prod_{i} P(x_i | \{x_p\}_{p \in \text{Parent}})$$

Causal dependencies among random variables

The ATT method successfully captures the corresponding topology of Bayesian networks

$(10 \rightarrow (17 \rightarrow (18 \rightarrow (19 \rightarrow (20 \rightarrow (21 \rightarrow (22 \rightarrow (23 \rightarrow (19 \rightarrow (19 \rightarrow (21 \rightarrow (21 \rightarrow (19 \rightarrow (19$ $(8) \rightarrow (9) \rightarrow (1) \rightarrow (1) \rightarrow (12) \rightarrow (13) \rightarrow (14) \rightarrow (15)$

Application to stock-price fluctuation in S&P 500 index

NLL in training process

Data: binarized change rates of stock prices 1 if it is higher than the average for all stocks and 0 otherwise.

NLL vs. bond dimension

Optimized networks achieve better performance.

Optimized network structure for stock-price fluctuation in S&P500 index

Optimized network structure for stock-price fluctuation in S&P500 index

- Adapted tensor tree generative modeling
 - Succeeds for data with no prior knowledge
 - Optimized network structure shows hidden relational structure behind data •

Sample code:

Tensor tree learns hidden relational structure in data to construct generative models

Reference: arXiv:2408.10669

https://github.com/KenjiHarada/adaptive-tensor-tree-generative-modeling

