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Applications of TN techniques to machine learning

I.V. Oseledets, “Tensor-Train Decomposition,” (2011).

Tensor decomposition in machine learning algorithms 

• Tensor train ( = MPS: matrix product state) 

• Compression of tensor in machine learning algorithms 

• Quantics tensor train 

• Decomposition 

<latexit sha1_base64="Hi3DbF568DfQtzT49Vun/PEYa/U="></latexit>

x → (xN , xN→1, · · · , x1)Tensorization

• Images: Latorre (2005), … 

• NN: Novikov, et al. (2015), …

E. Stoudenmire, and D.J. Schwab, “Supervised Learning with Tensor Networks,” (2016).

The number of TN applications 
rapidly grows in machine learning!
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x = xN → 2N→1 + xN→1 → 2N→2 + · · ·+ x2 → 2 + x1



Generative modeling

Samples
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P✓(x) Model of a distribution with parameters 

Generative modeling is an important technique in machine learning 
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✓

Sampling

Generative modeling involves creating a classical distribution model behind data.

Learning



Models for generative modeling

Born machine
Measurement

011
Qubits Output bits
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P (011) = |c011|2

Models for generative modeling
• Boltzmann machine and restricted Boltzmann machine (RBM) 

• Variational autoencoder (VAE) 

• Generative adversarial network (GAN) 

• Normalizing flow 

• Diffusion model

Based on classical physics

Magnet  (spin)

Diffusion process

Based on projective measurements of 
a quantum state

<latexit sha1_base64="acp4aEajxDQZwaywDg8uqFo6alI="></latexit>

p(x) = | (x)|2
Z.-Y. Han, J. Wang, H. Fan, L. Wang, and P. Zhang, 

Phys. Rev. X 8, 031012 (2018).



Two approaches for the Born machine 

• Zhao-Yu Han, Jun Wang, Heng Fan, Lei Wang, and Pan Zhang, “Unsupervised Generative Modeling Using Matrix Product States,” Physical Review X, 8, 031012(2018). 

• Song Cheng, Lei Wang, T. Xiang, and Pan Zhang, “Tree tensor networks for generative modeling,” Physical Review B, 99, 155131(2019). 

• Jin-Guo Liu and Lei Wang, “Differentiable learning of quantum circuit Born machines,” Physical Review A, 98, 062324(2018). 

• Marcello Benedetti, et al., “A generative modeling approach for benchmarking and training shallow quantum circuits,” npj Quantum Information, 5, 45(2019). 

• Brian Coyle, et al., “The Born supremacy: quantum advantage and training of an Ising Born machine,” npj Quantum Information, 6, 60(2020). 

• Marcello Benedetti, et al., “Variational Inference with a Quantum Computer,” Physical Review Applied, 16, 044057(2021). 

• Manuel S Rudolph, et al., “Synergistic pretraining of parametrized quantum circuits via tensor networks,” Nature Communications, 14, 8367(2023). 

• Mohamed Hibat-Allah, et al., “A framework for demonstrating practical quantum advantage,” Communications Physics, 7, 68(2024).

Tensor network model (TN)

Parametrized quantum circuit model (PQC)

TREE TENSOR NETWORKS FOR GENERATIVE MODELING PHYSICAL REVIEW B 99, 155131 (2019)

(a)

(b)
FIG. 1. (a) Tree-structure factor graph, where each block denotes

a random variable with a value of −1 or 1, in which the blue (purple)
block represents a hidden (visible) variable. The edge between two
blocks introduces a factor function f (k) of those two variables. By
adjusting those factor functions, the model could obtain the appro-
priate joint probability. (b) Tree tensor network, where xi denote the
value of the ith pixel of the data set. Each yellow circle denotes a
two- or three-order tensor. The edge between two tensors denotes
a share index of tensors, which is also called a virtue index in the
literature and will be contracted later. The exposed edge denotes the
so-called physical index of tensors; those indices would ultimately
be determined by the data set. For one of the given configurations of
the physical indices, the probability of the configuration is propor-
tional to the final scale value of the TTN after contracting all the
virtue indices.

It has been proved that any factor graph can be mapped
to a tensor network, whereas only a special type of tensor
network has corresponding factor graphs [25]. We take the
tree-structure graph model as an example. Let us put a matrix
M (k) in each edge k and an identity tensor δ( j) in each hidden
node h j , with the elements being written as

M (k)
ha,hb

= f k (ha, hb) (3)

and

δ
( j)
l,r,u =

{
1, l = r = u,

0, otherwise,
(4)

where each index of δ( j) corresponds to an adjacent edge of
h j and bond dimensions of those indices are identical to the
number of states of h j . One can use either QR decomposition
or singular-value decomposition (SVD) decomposition to sep-
arate M (k) into a product of two matrices as

M (k)
ha,hb

=
∑

k

A(k)
ha,k

B(k)
k,hb

. (5)

Without loss of generality, here we assume in the graph ha !
hb. The obtained matrices A and B can be absorbed into a
tensor defined on nodes,

T ( j)
l,r,u =

∑

x,y,z

B(l )
l,xB(r)

r,yδ
( j)
x,y,zA

(u)
z,u. (6)

For j = 1, we simply let the bond dimension of z, u equal 1.
Now we arrive at a specific form of TNN as shown in Fig. 1(b).
Notice that the tensor T ( j) here is just a special subset of the
general three-order tensor, which means if we use general
tensors as the building blocks of the TNN, we would get an
extension of the origin factor graph model.

Here we want to recall that the rule of the sum-product
approach in a tree-structure factor graph is, in fact, equivalent
to the tensor contraction of the TTN, with the same order that
the sum-product algorithm applies. However, notice that the
tensor contraction is much more general than the sum-product
algorithm. In the cases when the sum-product algorithm is
no longer applicable, the TN can still be approximately con-
tracted using approaches such as the tensor renormalization
group [37].

C. Tree tensor network generative model

As motivated in the last section, we treat the TTN as a di-
rect extension of the tree-structure factor graph for generative
modeling. As illustrated in Fig. 1(b), each circle represents
a tensor; each edge of the circle represents an individual
index of the tensor. The first tensor is a matrix connecting the
second and third tensors, while the remaining tensors are all
three-order tensors with three indices. The index between two
tensors is called a virtual bond, which would be contracted
hereafter. The left and right indices of the tensors in the
bottom of the TTN are respectively connected to two pixels
of the input image and hence are called physical bonds.

As we indicated in the Introduction, the TTN generative
model can also be treated as one kind of Born machine [13];
that is, the TTN represents a pure quantum state "(x), and
p(x) is induced by the square of the amplitude of the wave
function following Born’s rule,

p(x) = |"(x)|2

Z
, (7)

where Z =
∑

x |"(x)|2 is the normalization factor. In the
TTN, "(x) is represented as a contraction of the total Nt
tensors in the TTN,

"(x) =
∑

{α}
T [1]

α2,α3

Nt∏

n=2

T [n]
αn,α2n,α2n+1

. (8)

The reason we choose the quantum-inspired Born machine
instead of directly modeling a joint probability is based on a
belief that the Born machine representation is more expressive
than classical probability functions [13,31]. Meanwhile, treat-
ing the TN as a quantum state could introduce the canonical
form of the TN, which simplifies the TN contraction calcu-
lation and makes contractions more precise. For example, if
tensor T [2] fulfills

∑
α4,α5

T [2]
α2,α4,α5

T [2]
α

′
2,α4,α5

= δα2,α
′
2
, we say that

the tensor T [2] is canonical for index α2, or, more visually
speaking, upper canonical. In the TTN, there are three kinds
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dimension increases, a MPS enhances its ability to para-
metrize complicated functions. See Refs. [17,18] for recent
reviews on MPS and its applications on quantum many-
body systems.
In practice, it is convenient to use MPS withD0¼DN ¼1

and, consequently, reduce the leftmost and rightmost matri-
ces to vectors [30]. In this case, Eq. (2) reads schematically

ð3Þ

Here, the blocks denote the tensors and the connected lines
indicate tensor contraction over virtual indices. The dangling
vertical bonds denote physical indices. We refer to
Refs. [17,18] for an introduction to these graphical notations
of TN. Henceforth, we shall present formulas with more
intuitive graphical notations wherever possible.
The MPS representation has gauge degrees of freedom,

which allows one to restrict the tensors with canonical
conditions. We remark that, in our setting of generative
modeling, the canonical form significantly benefits from
computing the exact partition function Z. More details
about the canonical condition and the calculation of Z can
be found in Appendix A.

B. Learning MPS from data

Once the MPS form of wave function ΨðvÞ is chosen,
learning can be achieved by adjusting parameters of the
wave function such that the distribution represented by
Born’s rule Eq. (1) is as close as possible to the data
distribution. A standard learning method is called “maxi-
mum likelihood estimation,” which defines a (negative)
log-likelihood function and optimizes it by adjusting the
parameters of the model. In our case, the negative log-
likelihood (NLL) is defined as

L ¼ −
1

jT j
X

v∈T
lnPðvÞ; ð4Þ

where jT j denotes the size of the training set. Minimizing
the NLL reduces the dissimilarity between the model
probability distribution PðvÞ and the empirical distribution
defined by the training set. It is well known that minimizing
L is equivalent to minimizing the Kullback-Leibler diver-
gence between the two distributions [42].
Armed with canonical form, we are able to differentiate

the negative log-likelihood (4) with respect to the compo-
nents of an order-4 tensor Aðk;kþ1Þ, which is obtained by
contracting two adjacent tensors AðkÞ and Aðkþ1Þ. The
gradient reads

∂L
∂Aðk;kþ1Þwkwkþ1

ik−1ikþ1

¼ Z0

Z
−

2

jT j
X

v∈T

Ψ0ðvÞ
ΨðvÞ

; ð5Þ

where Ψ0ðvÞ denotes the derivative of the MPS with
respect to the tensor element of Aðk;kþ1Þ, and Z0 ¼
2
P

v∈VΨ0ðvÞΨðvÞ. Note that although Z and Z0 involve
summations over an exponentially large number of terms,
they are tractable in the MPS model via efficient contrac-
tion schemes [17]. In particular, if the MPS is in the mixed-
canonical form [17], Z0 can be significantly simplified to
Z0 ¼ 2Aðk;kþ1Þwkwkþ1

ik−1ikþ1
. The calculation of the gradient, as

well as variant techniques in gradient descent such as the
stochastic gradient descent (SGD) and adaptive learning
rate, are detailed in Appendix B. After gradient descent, the
merged order-4 tensor is decomposed into two order-3
tensors, and then the procedure is repeated for each pair of
adjacent tensors.
The derived algorithm is quite similar to the celebrated

DMRG method with a two-site update, which allows us to
adjust dynamically the bond dimensions during the opti-
mization and to allocate computational resources to the
important bonds that represent essential features of data.
However, we emphasize that there are key differences
between our algorithm and DMRG:

(i) The loss function of the classic DMRG method is
usually the energy, while our loss function, the
averaged NLL (4), is a function of data.

(ii) With a huge amount of data, the landscape of the
loss function is typically very complicated, so that
modern optimizers developed in the machine learn-
ing community, such as the stochastic gradient
descent and learning rate adapting techniques
[43], are important to our algorithm. Since the
ultimate goal of learning is optimizing the perfor-
mance on the test data, we do not really need to find
the optimal parameters minimizing the loss on the
training data. One usually stops training before
reaching the actual minima to prevent overfitting.

(iii) Our algorithm is data oriented. It is straightforward
to parallelize over the samples since the operations
applied to them are identical and independent. In
fact, it is a common practice in the modern deep
learning framework to parallelize over this so-called
“batch” dimension [37]. As a concrete example, the
GPU implementation of our algorithm is at least 100
times faster than the CPU implementation on the full
MNIST data set.

C. Generative sampling

After training, samples can be generated independently
according to Eq. (1). In other popular generative models,
especially an energy-based model such as a restricted
Boltzmann machine (RBM) [3], generating new samples
is often accomplished by running MCMC from an initial
configuration, due to the intractability of the partition
function. In our model, one convenience is that the partition
function can be exactly computed with complexity linear in

UNSUPERVISED GENERATIVE MODELING USING MATRIX … PHYS. REV. X 8, 031012 (2018)
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MPS Binary tree-TN
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|ω(x)→ ↑ MERA, PEPS, …



Synergistic pretraining of parametrized quantum circuits via tensor networks

Manuel S Rudolph, et al., Nature Communications, 14, 8367(2023).

The synergistic approach resolves the issue 
of the prevalence of barren plateaus in PQC 

optimization landscapes

Synergistic approach by TN and PQC
actually exhibit an increase in variance with circuit depth, a trend
which is more visible in the all-to-all extended circuit. Overall, the
gradients of the all-to-all topologies have a larger gradient variance,
indicating that the circuit extension after transferring theMPS solution
is crucial to the success of the PQC. Thesefindings suggest that the use
of trained MPS places the quantum circuit model in a region of the
parameter space without evident barren plateaus, but where the
additional flexibility provided by increased connectivity in the quan-
tum circuit enables it to effectively improve on the classical MPS
solution. With a more sparse set of measurements, we identify a very
similar trend when utilizing χ = 4 MPS solutions.

Several potential criticisms may be raised about the scenario
studied above and presented in Fig. 3. First, while statevector simula-
tion allows us to generate valuable statistics for deep circuits, it only
permits us to consider system sizes and datasets up to 20 qubits. This
limitation is particularly restrictive when attempting to highlight the
scalability of our method since trainability issues induced by barren
plateaus are expected tomanifest themselvesmoreprominently as the
qubit count increases. Consequently, we had to extend the decom-
posed circuits into an all-to-all topology to showcase the utility of our
methodmorediscernibly at such a limitedqubit count. This is a second
potential criticism because the study of all-to-all topologies is unlikely
to be highly relevant in practice given the sheer number of noisy gates
and possibly restricted hardware connectivity. Finally, the correlation
structure in the Cardinality dataset is such that an MPS with bond
dimension χ linear in the number of qubits can exactly represent the
target distribution. Consequently, one might expect pretraining using
an MPS to be abnormally successful. This fear is only partially sup-
ported by our findings in Fig. 2 because, while initial losses after pre-
training on the BAS dataset are high, the resulting QCBM optimization
is most dramatically improved.

We aim to address all these potential concerns with a com-
plementary gradient scaling result using MPS-based quantum circuit
simulation and a generative modeling task on the BAS dataset in a
square arrangement. The 2D correlations in the BAS dataset suggest
that a favorable circuit ansatz for a QCBM is one comprised of SU(4)
gates in a 2D next-neighbor topology. Notably, this resembles a prac-
tical circuit topology for which quantum devices could exhibit an
advantage, given the hardness ofmany 2D problems and the hardware
connectivities in various modern quantum devices.

For the benchmarks, we train N-qubit TNBMs with χ = 2 and χ = 4
on all Oð2

ffiffi
n

p
Þ samples from the

ffiffiffi
n

p
×

ffiffiffi
n

p
BAS dataset. We then

decompose the correspondingMPS into one linear layer of SU(4) gates
and extend that layer into a 2D topology using identity-initialized
SU(4) gates. For the randomquantum circuit reference case, the linear
part of the topology is randomly initialized, but the extension to the 2D
topology is again done using identity operations. The gradients are
computed via automatic differentiation of the MPS-based quantum
circuit simulator. The identity initialization of the additional gates
helps us simultaneously keep the gradient computations both feasible
and exact by avoiding the need for the truncation of the simu-
lator MPS.

Fig. 4 depicts the scaling of the gradient magnitude of the KL
divergence loss functionwith respect to the circuit parameters, i.e., the
2-norm of the gradient vector, up to 10 × 10 = 100 qubits. Even in this
new numerical setup, we observe results that are exactly consistent
with the results in Fig. 3 for the χ = 2 case, but we are now able to see
that pretraining using a χ = 4 MPS eventually outperforms and keeps
up the favorable scaling. This supports the intuition that increasing
classical resources are required as the problem size increases, and that
high-performance schemes to convert tensor network states into
quantumcircuitswill beneeded in the future. However, it also suggests
that moderate classical resources are sufficient in order to continue to
provide value for the following quantumcircuit optimization. Onemay
have expected that drastic increases in classical compute would be

required to escape barrenplateaus, but ourfindings suggest that this is
in fact not exponentially demanding using a synergistic framework
jointly leveraging TNs and PQCs.

The avoidance of barren plateaus, as indicated in Figs. 3 and 4, is
vital to ensuring the trainability of PQCs and their viability on quantum
hardware. Vanishing gradient variances imply that gradient magni-
tudes also vanish19, which leads the estimation of parameter gradients
on quantum hardware to require a number of measurements which
grows exponentially in the number of qubits. Additionally, barren
plateaus have been linked to the phenomena of cost concentration and
narrow gorges25, which hinder the ability of gradient-based and
gradient-free optimizers to find high-quality solutions, as well as the
existence of large numbers of low-quality local minima24, which pre-
sent further difficulties in learning. Aside from improving the training
performance in practice (as seen in Fig. 2), stable gradient variances
(such as those in Figs. 3 and 4) hint that a finite (or at worst, non-
exponential) number of quantum circuit evaluations may be sufficient
to estimate parameter gradients and perform PQC optimization on
quantum hardware in a scalable manner.

Discussion
This work introduces a synergistic training framework for quantum
algorithms, which employs classical tensor network simulations
towards boosting the performance of PQCs. Our framework allows a
problem of interest to be attacked first with the aid of abundant clas-
sical resources (e.g. GPUs and TPUs), before being transitioned onto
quantum hardware to find a solution with further improved perfor-
mance. By moving the work of quantum computers to improve on
promising classical solutions, rather than finding such solutions de
novo, we ensure that scarce quantum resources are allocated where
they are most effective, setting up parametrized quantum algorithms
for success.

Assessing the performance of our methods on generative mod-
eling and Hamiltonian minimization problems, we found that PQCs
initialized with this synergistic training framework not only obtained
better training losses using identical quantum resources, but also

Fig. 4 | Gradient magnitude scaling for a QCBM with the KL divergence loss
function and the BAS dataset. For the pretrained cases, we train MPS with bond
dimensions χ = 2 or χ = 4, decompose them into one layer of SU(4) gates while
optimizing the fidelity, and extend that layer to a 2D topology using identity gates.
The gradientmagnitude, i.e., the 2-normof the gradient vector, is then evaluatedon
anMPS-based quantum circuit simulator for practical feasibility.While the gradient
magnitudeof the randomly initialized circuits decayexponentiallywith the number
of qubits, the pretrained cases exhibit significantly more stable behavior. After
9 × 9 = 81 qubits, the gradients for the χ = 2 pretraining start to decay and are sur-
passed by the χ = 4 case.

Article https://doi.org/10.1038/s41467-023-43908-6
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Compared to previousworks, ourmethod is broadly similar to the
proposal of ref. 31 to use classically trained TN models for initializing
PQCs, which was predicted to yield benefits in performance and
trainability within general machine learning tasks. Our findings can
thus be seen as both a concrete realization of this general proposal,
applicable to a diverse rangeof circuit architectures and learning tasks,
as well as a robust experimental verification of the benefits anticipated
there. Closer to our work is the pretraining method of ref. 32, where
trainedMPS with bond dimension χ = 2 were exactly decomposed into
a staircase of two-qubit gates, which were then used to initialize
quantum circuits for machine learning tasks. While this method was
shown to improve theperformanceand trainability of PQCmodels, the
restriction to χ = 2 MPS placed a limit on the extent of classical
resources which could be used to improve quantum models. By con-
trast, our synergistic optimization framework can be scaled up to
utilize arbitrarily large classical and quantum resources, a difference
that our results suggest gives continued returns in practice.

While the method we develop utilizes the specific circuit
decomposition procedure of ref. 33, any other scalable MPS to PQC
decomposition canbe used in its place, so long as the following criteria
are met: (a) It must accept as input MPS of arbitrarily large bond
dimensions, (b) It must output a circuit of any desired depth formed
from one- and two-qubit gates, and (c) It must converge to the original
MPS state vector at a reasonable rate as the circuit depth increases. All
of these criteriamustbe satisfied for themethod todeliver the benefits
seen here, with criterion (a) needed to use increasing classical
resources (ref. 32 is limited here), criterion (b) needed to use
increasing quantum resources within real-world quantum computers
(the methods of refs. 34–36 output single-layer circuits of k-qubit
gates, with k unbounded), and criterion (c) needed to avoid fidelity
plateaus which hinder the conversion of high-quality MPS into high-

quality PQC (ref. 37 exhibits such fidelity plateaus33). Besides ref. 33,
also the decomposition algorithms in refs. 38,39 satisfy all of these
criteria, and are therefore promising candidates to be employedwithin
this synergistic optimization framework.

In this work, we propose a synergistic framework for boosting the
performance and trainability of PQCs using a pre-optimized initi-
alization strategy built on scalable TN algorithms, which leverages the
complementary strengths of both technologies. As depicted in Fig. 1,
this method uses TNs to first find a promising quantum state for the
parametrized quantum algorithm at hand, then converts this TN state
to the parameters of a PQC, where further optimization can be carried
out on quantum hardware. We employ a circuit layer-efficient
decomposition protocol33 for matrix product states (MPS), whose
high-fidelity conversion of MPS to various PQC architectures allows
leveraging high-quality MPS solutions. The resulting quantum circuits
can be extended with classically infeasible gates which enable better
performance relative to theMPS, as well as purely quantum-optimized
circuits. We empirically verify these performance improvements in
various problems from generative modeling and Hamiltonian ground
state search, finding that our method successfully converts deep
quantum circuits from being practically untrainable to reliably con-
verging to high-quality solutions. We further give evidence for the
scalability of our synergistic framework by probing the gradient var-
iances, i.e., the “barrenness”, of PQCs with up to 100 qubits, finding
gradient variances and magnitudes to remain stable with increasing
number of qubits and circuit depth. By ensuring that PQCs are set up
for success using the best solution available with today’s abundant
classical computing resources, we believe that our methods
might finally unlock the true potential of parametrized quantum
algorithms as effectivemethods for solving problems of deep practical
interest.

MPS Extended PQC

Time on Classical Hardware Time on Quantum Hardware

Tr
ai

ni
ng

 L
os

s

MPS to PQC approximation

bond dimension

Conventional Random Initialization

The Synergistic Framework

Fig. 1 | Schematic depictionof the synergistic training framework utilizingTNs
and PQCs. Rather than starting with a random initialization of circuit parameters
(black curve), which may suffer from problems such as barren plateaus and sub-
optimal local minima, we instead train a matrix product state (MPS) model on a
classical simulation of the problem at hand (left half of blue curves), whose per-
formance is bounded by the limited entanglement available via its bond dimension
χ. This MPS wavefunction is then approximately transferred using a layer-efficient
decomposition protocol that maps the MPS to linear layers of SU(4) gates. To

improve on the classical solution, the quantum circuit is extended with additional
gates (blue gates, initialized as near-identity operations) that would have been
unfeasible to simulate on classical hardware. We find numerical evidence that
quantum circuit models that leverage classically initialized circuit layers (gray &
blue shaded gates) exhibit drastically improved performance over quantum cir-
cuits that were fully optimized on quantum hardware (blue shaded gates) and are
likely to run into common trainability issues.
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Network structure and performance
CHENG, WANG, XIANG, AND ZHANG PHYSICAL REVIEW B 99, 155131 (2019)
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FIG. 3. (a) Training the NLL of the TTN Born machine as a
function of the data size |T |; the system size is N = 16. (b) Training
the NLL of the TTN Born machine as a function of the system size
N ; the data size |T | = 50.

left as a two-dimensional vector. The square of the values
of this two-dimensional vector is the marginal probability of
xk = 0, 1. Then the conditional probability for the next pixel is
computed as

p(x j |xk ) = p(x j, xk )
p(xk )

. (14)

In diagram notation this is equivalent to using a sampled value
of xk to fix the corresponding bond of xk and keeping the
corresponding bond of x j open in contraction. The conditional
probability of Eq. (14) can be generalized to the case of
multiple fixed pixels. Equipped with all the conditional prob-
abilities, we are able to sample pixels of images one by one.

III. NUMERICAL EXPERIMENTS

A. Random data set

Remembering a specific set of random samples, i.e., as
an associative memory [39], is perhaps the hardest and least
biased task for testing the expressive power of generative
models. Since in the TTN we are able to compute the partition
function, the normalized probability of the training sample,
and the NLL exactly, we can quantify how well our model
learned from the training random samples. Generally speak-
ing, the smaller the NLL is, the more information we capture
from the training data set. Notice that the theoretical lower
bound of the NLL is ln(|T |). Thus, if the NLL is equal to
ln(|T |), it means the KL divergence is zero, indicating that
the distribution of our model is exactly the same as empirical
data distribution. That is, our model has exactly recorded the
entire training set and is able to generate samples identical to
training data with an equal probability assigned to each of the
training samples.

In Fig. 3(a), we show the NLL of the training set as a func-
tion of the number of training patterns |T |. The dashed line is
the NLL’s theoretical limit ln(|T |). As we can see, the NLL
converges to the theoretical limit when the maximum bond
dimension Dmax ! |T |. In fact, a MPS or TTN with a bond
dimension equal to D could analytically encode D images
[40]. So when Dmax ! |T |, TTNs have enough expressive
power to converge to the theoretical limit.
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FIG. 4. Comparison between the TTN and MPS Born machines
trained on ten random patterns with different system sizes. As the
system size become larger, MPS can no longer reach the theoretical
limit of the NLL when Dmax equals the number of samples, while
the TTN is almost unaffected by the system size. This is because the
structure of the TTN can capture the long-range dependences better.

As noticed in the traditional theory of tensor networks,
the maximum entanglement entropy that a bond of the tensor
network can capture equals ln(D) [41]. For the random data
sets considered here, the classical Shannon entropy of the TN
approaches this value of entanglement entropy. But for more
general cases the relation between entanglement entropy and
classical Shannon entropy is not completely understood [42].

In Fig. 3(b) we plot the NLL as a function of the number of
pixels in each random pattern. The number of training patterns
|T | = 50. Figure 3(b) shows that when |Dmax| < |T |, the NLL
increases almost linearly with the number of variables in the
pattern. This is because the long-range correlations of a par-
ticular set of random patterns are dense, and the TTN does not
have enough capacity to exactly record all the information of
the random patterns. When |Dmax| ! |T |, since the correlation
length of pixels in the TTN grows only logarithmically with
the size of the image, the NLL can always easily converge
to the theoretical limit regardless of how large the size of the
picture is.

This point is further illustrated in Fig. 4, where the re-
lationship between system size and training the NLL on
different models is shown. As an example, we use |T | = 10
random patterns to train both the TTN and MPS models. We
found that even at very large N , the TTN can still converge
to the NLL’s theoretical minimum once its maximum bond
dimension reaches 10. However, under the same or even
higher bond dimension (Dmax = 12), the NLL of the MPS still
fails in converging to the theoretical bound when the size is
very large. Because in the MPS the correlation length decays
exponentially fast, the information contained in the middle
bond is more saturated when the image size becomes very
large, making the maximum-likelihood training less efficient.

B. Binary MNIST data set

A standard benchmark for computer vision, especially for
generative modeling, is the handwritten digits of the MNIST
data set. The binary MNIST data set contains a training set
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of canonical forms for each tensor: upper canonical, left
canonical, and right canonical, depending on which index
was finally left. The three canonical forms are shown in the
following diagrammatic notation:

.

The line on the right side represents the identity matrix.
It is technically easy to canonicalize a tensor in the TTN.

For example, we can start from one end of the tree and use
the QR decomposition of the tensor to push the noncanonical
part of the tensor to the adjacent tensor. By repeating this
step, finally, one will push all noncanonical parts of the TTN
to just one tensor, called the central tensor, and all other
tensors are in one of the three canonical forms. Analogous
to the mixed-canonical form of MPSs, we call this form the
mixed-canonical form of the TTN.

Once the TTN is in the canonical form, many calculations
become simple, for example, the normalization factor Z fi-
nally becomes the squared norm of a tensor:

, (9)

where the orange tensor represents the noncanonical central
tensor in an arbitrary position. The direction of all the ten-
sors’ canonical forms is pointed toward the direction of the
central tensor. After all, to get the normalization Z , the only
calculation we need to do is the trace of multiplication of the
central tensor by its complex conjugate.

General tensor networks have a gauge degree of freedom
on their virtual bond. One can insert a pair of unitary matrices
UU −1 in the virtual bond without changing the final contrac-
tion results. This could damage the accuracy of the training
algorithm and brings additional computational complexity.
Fortunately, for acyclic tensor networks like the TTN, the
canonical form fixes this degree of freedom.

D. Data representations

In this work, we consider binary data, such as black and
white images, so the local dimension of the Hilbert space of
each physical bond is 2. As illustrated in Fig. 2, each index for
the lowest-layer tensors has two components, corresponding
to the two possible values of the connected pixels. The pixels
can be simply vectorized from the image to a vector, as
explored in [14] for the MPS Born machine, which we call
one-dimensional (1D) representation, as it basically does not
use any features in the two-dimensional (2D) structure of the
images.

Compared with the MPS, a significant advantage of
the TTN is that it can easily achieve the two-dimensional

(b) (c)

(a)

FIG. 2. (a) The TTN with 2D structure. Changing the 1D order
of data with the 2D order is equivalent to using the TTN with 2D
structure replacing Fig. 1(b). (b) The 1D order of data. (c) The 2D
order of data.

modeling of natural images. Figure 2(a) shows the two-
dimensional modeling of the TNN. In this architecture, each
tensor is responsible for one local area of pixels, which
greatly reduces the artificial fake long-range correlations.
Hence, we call it the 2D representation. Clearly, the 2D
representation keeps the model structure of Fig. 1, while only
requiring reshuffling the data index to proper order, as shown
in Figs. 2(b) and 2(c) [21,38].

In practice, in order to ensure that the number of input
pixels is a power of 2, we may artificially add some pixels that
are always zero. If the input data are the 1D permutation, we
add those zero pixels to the two ends of the one-dimensional
chain; if it is 2D, we add to the outermost edge of the
2D lattice. This is analogous to the “padding” operation in
convolution networks.

E. Training algorithm of the TTN

As we introduced in Sec. II A, the cost function we used
in the training is the negative log likelihood [Eq. (1)], which
is also the KL divergence between the target empirical data
distribution and the probability distribution of our model, up
to a constant.

A standard way to minimize the cost function is the
stochastic gradient descent algorithm (SGD). Unlike the tra-
ditional SGD, which updates all trainable parameters at the
same time, in the TTN we have a sweeping process; that
is, it iteratively updates each tensor based on the gradient
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central tensor. After all, to get the normalization Z , the only
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structure replacing Fig. 1(b). (b) The 1D order of data. (c) The 2D
order of data.

modeling of natural images. Figure 2(a) shows the two-
dimensional modeling of the TNN. In this architecture, each
tensor is responsible for one local area of pixels, which
greatly reduces the artificial fake long-range correlations.
Hence, we call it the 2D representation. Clearly, the 2D
representation keeps the model structure of Fig. 1, while only
requiring reshuffling the data index to proper order, as shown
in Figs. 2(b) and 2(c) [21,38].

In practice, in order to ensure that the number of input
pixels is a power of 2, we may artificially add some pixels that
are always zero. If the input data are the 1D permutation, we
add those zero pixels to the two ends of the one-dimensional
chain; if it is 2D, we add to the outermost edge of the
2D lattice. This is analogous to the “padding” operation in
convolution networks.

E. Training algorithm of the TTN

As we introduced in Sec. II A, the cost function we used
in the training is the negative log likelihood [Eq. (1)], which
is also the KL divergence between the target empirical data
distribution and the probability distribution of our model, up
to a constant.

A standard way to minimize the cost function is the
stochastic gradient descent algorithm (SGD). Unlike the tra-
ditional SGD, which updates all trainable parameters at the
same time, in the TTN we have a sweeping process; that
is, it iteratively updates each tensor based on the gradient
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to just one tensor, called the central tensor, and all other
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calculation we need to do is the trace of multiplication of the
central tensor by its complex conjugate.
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on their virtual bond. One can insert a pair of unitary matrices
UU −1 in the virtual bond without changing the final contrac-
tion results. This could damage the accuracy of the training
algorithm and brings additional computational complexity.
Fortunately, for acyclic tensor networks like the TTN, the
canonical form fixes this degree of freedom.

D. Data representations

In this work, we consider binary data, such as black and
white images, so the local dimension of the Hilbert space of
each physical bond is 2. As illustrated in Fig. 2, each index for
the lowest-layer tensors has two components, corresponding
to the two possible values of the connected pixels. The pixels
can be simply vectorized from the image to a vector, as
explored in [14] for the MPS Born machine, which we call
one-dimensional (1D) representation, as it basically does not
use any features in the two-dimensional (2D) structure of the
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Compared with the MPS, a significant advantage of
the TTN is that it can easily achieve the two-dimensional
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FIG. 2. (a) The TTN with 2D structure. Changing the 1D order
of data with the 2D order is equivalent to using the TTN with 2D
structure replacing Fig. 1(b). (b) The 1D order of data. (c) The 2D
order of data.

modeling of natural images. Figure 2(a) shows the two-
dimensional modeling of the TNN. In this architecture, each
tensor is responsible for one local area of pixels, which
greatly reduces the artificial fake long-range correlations.
Hence, we call it the 2D representation. Clearly, the 2D
representation keeps the model structure of Fig. 1, while only
requiring reshuffling the data index to proper order, as shown
in Figs. 2(b) and 2(c) [21,38].

In practice, in order to ensure that the number of input
pixels is a power of 2, we may artificially add some pixels that
are always zero. If the input data are the 1D permutation, we
add those zero pixels to the two ends of the one-dimensional
chain; if it is 2D, we add to the outermost edge of the
2D lattice. This is analogous to the “padding” operation in
convolution networks.

E. Training algorithm of the TTN

As we introduced in Sec. II A, the cost function we used
in the training is the negative log likelihood [Eq. (1)], which
is also the KL divergence between the target empirical data
distribution and the probability distribution of our model, up
to a constant.

A standard way to minimize the cost function is the
stochastic gradient descent algorithm (SGD). Unlike the tra-
ditional SGD, which updates all trainable parameters at the
same time, in the TTN we have a sweeping process; that
is, it iteratively updates each tensor based on the gradient

155131-4

Network structures align with 
geometrical relationships among pixels



Optimizing a tensor network structure

In the case of the ground-state calculation, the network structure 
aligns with local interactions on a lattice.

Ex. 1D model ⇒ MPS,   2D model ⇒ PEPS

Usually, we first fix a tensor network structure.

However, we often have no prior knowledge of data.

Our goal 
Optimizing a tensor network structure for generative 
modeling without prior knowledge of data.



Optimization of network structure for a ground-state calculation
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• Visualization of entanglement structure 

• Improvement of variational energies

Results of optimization of network structure for a ground-state calculation
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(a)

(b)

(c)

FIG. 7. Optimization process when α = 0.5 and N = 64. (a) The
initial matrix product network (MPN). (b) After the first sweep.
(c) Any time after the second sweep. Only the left half of the tree
tensor network (TTN) is presented, while the right half is symmetric
with respect to the center of the system.

cutoff condition, the number of block states kept in the
practical calculation can be smaller than χ . For example,
we kept only 26 states, at most, for α = 0.5 and N =
64 and 128, while 40 states were kept for α = 1.0 and N =
64. The truncation error is less than 1.3 × 10−11 for (α, N ) =
(0.50, 64), (0.50, 128), (0.75, 64), and (0.80, 64) and 2.5 ×
10−8 at the worst case of (α, N ) = (1.00, 64).

Figure 7 shows the transition process of the TTN structure
during the sweeps for α = 0.5 and N = 64. The calculation
starts with the initial MPN shown in Fig. 7(a). After the first
sweep, a structure like a perfect binary tree appears for every
four sites, as shown in Fig. 7(b), where the MPN structure
remains in the upper part of the diagram. After the second
sweep, the perfect binary tree structure shown in Fig. 7(c)
expands up to the top. This is the optimal TTN structure,
which is unchanged afterward. We emphasize that the optimal
TTN structure obtained by the calculation agrees with the one
derived from the perturbative RG scheme discussed above.
We observed a similar transition process for α = 0.5 and
N = 128, where the perfect binary TTN emerges after three
sweeps. Here, we note that the intermediate TTN structure
may depend on how the center bond moves during a sweep;
the structure in Fig. 7(b) is the one obtained with the sweep
procedure explained in Appendix A. The point is that, as
the calculation proceeds, the TTN structure smoothly changes
toward the optimal one shown in Fig. 7(c).

Table II shows the maximum and average of the bond
EE obtained in the optimized TTN for α = 0.5 and N =
64 and 128. For comparison, the same set of data obtained in
the fixed MPN is shown. Here, the bonds directly connected
to the bare spins are not included in the analysis since they
always carry the EE of the amount ln 2 irrespective of the
network structure, reflecting the fact that the two states | ↑〉
and | ↓〉 of each bare spin have the same reduced DM weight
1
2 . It is clearly seen in the table that both the maximum and

TABLE II. Maximum and average of the bond EE obtained for
optimized TTN and fixed MPN when N = 64 and 128 with α = 0.5.
The EEs on the boundary bonds are not included in the analysis.

Type Maximum Average

Optimized TTN (N = 64) 0.1110 0.0640
Optimized TTN (N = 128) 0.1110 0.0625
MPN (N = 64) 0.6935 0.3697
MPN (N = 128) 0.6935 0.3719

average of the bond EEs are lessened by the tree structure
optimization, with the suppression ratio about 1

6 .
Figure 8 shows the expectation values of the nearest neigh-

bor spin-correlation functions 〈Si · Si+1〉 when α = 0.5 and
N = 128. As seen in the figure, the correlation functions
obtained from the MPN coincide with those from the opti-
mal TTN. This is because the ground state for α = 0.5 is
close to the product state consisting of the singlet dimers,
and accordingly, both the optimized TTN and MPN obtained
have the sufficient potential of representing the ground state
accurately enough. Indeed, the strong dimerization in every
two sites can be confirmed in the figure where 〈S2#−1 · S2#〉
is distributed within the range −0.732 to − 0.735, while the
spin correlations across neighboring dimers are weak. Also,
we note that the ground state energy calculated by the MPN
agrees with that of the optimal TTN up to 11 digits.

Distinctions between the optimized TTN and the MPN can
be found in the spatial distribution of the EE on the auxiliary
bonds, although both approaches provide accurate results at
the level of the correlation functions. In Fig. 9, we compare
the EE distributions on the two different networks of the
optimized TTN and the MPN for α = 0.5 and N = 128. In
the figure, we have introduced the horizontal coordinate x
(for both the optimized TTN and the MPN) and the height
coordinate y (only for the optimized TTN) to specify the
positions of the auxiliary bonds; the definitions of the coordi-
nates are presented in Appendix C. The EEs on the boundary
bonds directly connected to the bare spins that take the value
S = ln 2 are not included in Fig. 9.

0010

−0.5

0

: MPN
: optimal

FIG. 8. Nearest neighbor spin correlation function when α = 0.5
and N = 128. Open circles and solid squares, respectively, represent
the obtained result by the matrix product network (MPN) and the
optimal tree tensor network (TTN).

013031-6

AUTOMATIC STRUCTURAL OPTIMIZATION OF TREE … PHYSICAL REVIEW RESEARCH 5, 013031 (2023)

(a) (b)

(c)

J J J

J J J J J J J J

Jα

Jα 2 Jα 3Jα Jα Jα JαJα 2

FIG. 6. Inhomogeneous interactions on the hierarchical chain
when (a) N = 2, (b) N = 4, and (c) N = 16.

of this technical issue about the sweeping path of iterative
computation.

While we employ the bond EE for the evaluation of the
local network structure in the proposed algorithm, one may
use other quantities such as the truncation error, i.e., the sum
of the eigenvalues of the reduced density matrix (DM) for the
discarded states, or the Renyi entropy [62]. The truncation
error is directly related to the variational energy, while the
bond EE can access the entanglement structure of the target
state.

Since the reconnection of the isometries in the central area
is always local, the optimization process of the TTN structure
may be trapped at local minima of the distribution landscape
of the EEs on the network. A possible device to escape from
such trapping is to combine a stochastic method with the
algorithm. More precisely, we can select one of the diagrams
in Fig. 4 according to the relative probabilities based on the
heat-bath method:

P(ab|cd ) ∝ exp[−βS (ab|cd )], (11a)

P(ac|bd ) ∝ exp[−βS (ac|bd )], (11b)

P(ad|bc) ∝ exp[−βS (ad|bc)], (11c)

where β is an effective inverse temperature. If β is gradually
increased during the sweeping process, the TTN structure
converges to the one where the sum of EE on all the bonds is
minimized, which is a candidate for the optimal TTN. If one
prefers to suppress the EE on each bond further, the square or
higher power of S (ab|cd ), S (ac|bd ), and S (ad|bc) can be used in
the exponent of the right-hand side of Eq. (11). Note that the
stochastic sampling of the tree structure can be parallelized.

IV. NUMERICAL RESULTS

We check the validity of the proposed optimization scheme
in Table I by applying it to the inhomogeneous Heisenberg
spin chain, whose Hamiltonian is formally written as

Ĥ =
N−1∑

i=1

Ji Si · Si+1, (12)

where Si = (Sx
i , Sy

i , Sz
i ) represents the S = 1

2 quantum spin
on the ith site. We consider the case where the position-
dependent exchange coupling Ji > 0 is recursively deter-
mined, as shown in Fig. 6. We call the model the hierarchical
chain in the following. The minimum unit is a two-site system
(N = 2) in Fig. 6(a), where the coupling constant between S1
and S2 is J > 0, which defines the unit of the energy scale.
Joining two two-site units with the coupling αJ , we obtain a

four-site unit (N = 4) in Fig. 6(b). The parameter 0 < α ! 1
controls the decay rate of the coupling. In general, joining
the 2n-site units (N = 2n) with the coupling αnJ , we obtain
the 2n+1-site system. Figure 6(c) shows the 24-site system
as an example. We treat the system size N = 64 (for several
α’s) and N = 128 (for α = 0.50) in the following numerical
calculations.

A significant feature of the hierarchical chain is that, when
α is sufficiently small, one can deduce its optimal TTN with
the perturbative RG scheme. In the hierarchical chain, the
largest exchange coupling is J , with which two spins S2l−1
and S2l are entangled most strongly. Therefore, it is natural
to connect the two spins coupled with J by an isometry to
form the spin blocks at the first step of the RG. In the second
step, two blocks connected via αJ are entangled most strongly,
and thus, one should put an isometry to merge the blocks
to form a new block. A recursive application of the above
RG process eventually gives rise to the perfect binary TTN,
which is expected to be the optimal one if α is small enough.
As α increases to unity, the system approaches the uniform
Heisenberg chain, where the critical ground state is realized.
Thus, the hierarchical chain may provide a good platform to
visualize the crossover of the entanglement structure between
the ones of the perfect binary tree and of the uniform wave
function with critical fluctuation.

To demonstrate that the optimal TTN can be automatically
obtained with the proposed algorithm, we start the calculation
from the MPN prepared by the following processes. We first
focus on two spins at an open end of the chain. We then
diagonalize the block Hamiltonian, truncate the high-energy
eigenstates, and include the neighboring spin into the new
block. We perform this recursive RG process from both ends
of the chain and increase the block size one by one. When the
left and right blocks meet at the center, we have an MPN in-
cluding all the isometries, from which we start the first sweep
of the structural optimization algorithm. The upper bound of
the bond dimension in the initial MPN is χ = 40.

During the iterative sweeps of the algorithm in Table I, the
isometries and their connectivity are successively modified.
We perform the diagonalization of the effective Hamiltonian
H̃ within the subspace of zero total magnetization

∑
i Sz

i = 0
and take the lowest energy state of the subspace as the ground
state. After the numerical convergence, the variational state
with optimal TTN structure is automatically obtained. For
the hierarchical chain, we do not use the stochastic choice of
reconnection in Eq. (11), but always choose the smallest EE
connection in each local update. We perform the SVD of the
renormalized ground state wave function $̃ by the diagonal-
ization of the reduced DM, whose eigenvalues are equal to the
square of the corresponding singular values. We note that the
SVD can also be directly carried out by using a linear algebra
package. For comparison, we performed additional calcula-
tion with forbidding the reconstruction of the TTN structure,
which remains MPN throughout the variational calculation.
Note that this calculation is equivalent to the finite-system
DMRG method.

We set the maximum number of the bond dimension to
be χ = 40. We discard the block states whose DM eigen-
values are smaller than 10−12 since their contribution to
the ground state wave function is negligible. Due to this
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Adaptive tensor tree generative modeling
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Select a new decomposition with the least classical mutual information

Step I Step II

Step III

K.H., Tsuyoshi Okubo and Naoki Kawashima, arXiv:2408.10669

Note. Use of a canonical form

In the class of general tree TNs



Stochastic estimation of mutual information
<latexit sha1_base64="gAyLarqvoTUAU60Y+rrY3ycQ53M="></latexit>

MI =
X

X,Y

P (X,Y ) ln


P (X,Y )

P (X)P (Y )

�

X Y

Probabilities for a distribution and marginal 
distributions can be calculated for a tree TN.
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Four applications of the ATT method

• Images of hand-written digits (QMNIST) 

• Stock-price fluctuations in the S&P 500 index

Tensor tree learns hidden relational structure in data 
to construct generative models

• Ten random bit sequences with long-range correlations

• Bayesian networks



Application to random bit sequences with long-correlations 

Optimized network

MPS

Fixed to 0

Data: ten random bit sequences

NLL in a training process Optimized network structure 

Random Random

Strongly correlated 
bits are concentrated



Application to images of digits
Data with a random permutation of pixels

Results of NLL
Fixed network

Optimized network structure

Optimized network

Distance from the center of the network

Strongly correlated 
pixels are concentrated.

The ATT method automatically learns the relevant relational structure among 
the random variables and places them close together on the tensor network



Application to Bayesian network’s data

Graphical model (Bayesian network)
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Pdata(x) =
Y

i

P (xi|{xp}p2Parent)

Causal dependencies among 
random variables

The ATT method successfully captures the corresponding topology 
of Bayesian networks

Results



Application to stock-price fluctuation in S&P 500 index

Data: binarized change rates of stock prices

NLL in training process

Fixed network

Optimizing network structure 

1 if it is higher than the average for all stocks and 0 otherwise.
Tensor tree learns hidden relational structures in data to construct generative models12

Figure 3. (a-c) Target Bayesian networks of random binary variables and
corresponding tensor network structures: (a) single dependency with no branching, (b)
single dependency with branching, and (c) multiple dependencies. In each diagram,
the upper layer is the target Bayesian network, and the lower layer is the corresponding
tensor network. All tensor trees are not schematic diagrams but actual solutions
obtained by the method regardless of the initial network configurations. (d,e) The
result of adaptive tensor tree generative modeling applied to the stock price fluctuation
patterns in S&P 500 index: (d) Bond-dimension dependency of the negative log-
likelihood, and (e) sample of generated tree structure at the bond dimension of 5.
Companies are colored according to the sector to which they belong.

NLL vs. bond dimension

Fixed network

Optimizing network structure 

Optimized networks achieve better performance.



Optimized network structure for stock-price fluctuation in S&P500 index

The leaf of a tree = a company in the S&P 500 index

Companies in the same sector tend to 
be close and form almost single-

colored sub-trees.

The ATT method learns hidden 
relational structure behind data

Companies are colored 
according to the sector to 

which they belong
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The ATT method learns hidden 
relational structure behind data

Companies are colored 
according to the sector to 

which they belong



Summary
• Adapted tensor tree generative modeling 

• Succeeds for data with no prior knowledge 

• Optimized network structure shows hidden relational structure behind data

Tensor tree learns hidden relational structure in data 
to construct generative models

Reference:  arXiv:2408.10669

   
	

  Sample code:
https://github.com/KenjiHarada/adaptive-tensor-tree-generative-modeling


