Floquet prethermalization of lattice gauge theory on superconducting qubits Tomoya Hayata Keio University

Collaborators: Yoshimasa Hidaka (YITP), Yuta Kikuchi (Quantinuum), Kazuhiro Seki (RIKEN), Arata Yamamoto (U. Tokyo), Seiji Yunoki (RIKEN)

References:

Kazuhiro Seki, Yuta Kikuchi, Tomoya Hayata, Seiji Yunoki, arXiv: 2405.07613 [quant-ph] <u>Tomoya Hayata, Kazuhiro Seki, Arata Yamamoto, arXiv:2408.10079 [hep-lat]</u> Tomoya Hayata, Yoshimasa Hidaka, arXiv: 2409.20263 [hep-lat] see also: Zache, González-Cuadra, Zoller, PRL 131 171902 (2023) TH, Hidaka, JHEP 2023, 126 (2023); JHEP 2023, 123 (2023)

My ultimate goal

$i\partial_t |\Psi\rangle = H |\Psi\rangle$

Solve the real-time dynamics of QFT (QCD)

Quantum computing of quantum field theories

Two directions

O Implementing QCD on quantum devices is never trivial

Develop quantum algorithms and wait fault-tolerant QCs

Simulating toy models of LGTs on NISQ devices

e.g., Schwinger model (QED in 1+1 dimensions)

What can we do?

Development roadmap

QUANTINUUM

*analysis based on recent literature in new, novel error correcting codes predict that error could be as low as 1E-10 in Apollo (ref: arXiv:2403.16054, arXiv:2308.07915)

© 2024 Quantinuum. All Rights Reserved.

physical qubits are more useful than logical qubits

What can we do?

$$N = 100, dt = 0.1, t = 10, N_{2Q} \sim 10000$$

Hamiltonian simulation of LGTs is challenging in the NISQ era

Floquet dynamics

O Time evolution with a time-dependent Hamiltonian

$$i\partial_t |\Psi\rangle = H|\Psi\rangle \qquad \qquad H(t+T) = H(t)$$

driven system \rightarrow heat up to infinite temperature

Trotter dynamics

Trotter dynamics as Floquet dynamics

O Feasibility of information scrambling on the present best fidelity hardware

Ion traps: Kazuhiro Seki, Yuta Kikuchi, Tomoya Hayata, Seiji Yunoki, 2405.07613 [quant-ph]

O Thermalization dynamics with many qubits

Superconducting qubits: <u>Tomoya Hayata, Kazuhiro Seki, Arata Yamamoto, arXiv:2408.10079 [hep-lat]</u> Tomoya Hayata, Yoshimasa Hidaka, 2409.20263 [hep-lat]

(1+1)-dimensional Z₂ LGT: Hamiltonian

Fermions with spins on one-dimensional lattice O Z_2 Gauge field

Electric field terms

$$H_g = -K \sum_{x=1}^{N-1} X_g(x, x+1)$$

string tension

Fermion

(1+1)-dimensional Z₂ LGT: Hamiltonian Fermion Z₂ Gauge field Fermions with spins on one-dimensional lattice

Fermion mass terms

 $\gamma_0 = \sigma_x$

$$H_f = \sum_{x=1}^{N} (1 + \underline{m}) \psi^{\dagger}(x) \gamma^0 \psi(x) \qquad \psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$
mass

Only nearest neighbor hoppings of 1d spinless fermions

Jordan-Wigner transformation works perfectly

$$H_f = \frac{1}{2} \sum_{x=1}^{N} (1+m) \left\{ X_1(x) X_2(x) + Y_1(x) Y_2(x) \right\}$$

Spinless Fermion NN hopping terms

$$H_{gf} = -\frac{1}{2} \sum_{x=1}^{N-1} Z_g(x, x+1) \left\{ X_1(x) X_2(x+1) + Y_1(x) Y_2(x+1) \right\}$$

Spinless Fermion NN hopping terms

Floquet circuit from Suzuki-Trotter decompositon

1st order Suzuki-Trotter decomposition

makes *dt* very large

$$U_{\rm F} = \mathrm{e}^{-\mathrm{i}H_{gf}dt} \mathrm{e}^{-\mathrm{i}(H_f + H_g)dt}$$

Floquet evolution

$$|\Psi(N_t)\rangle = (U_{\rm F})^{N_t} |\Psi(0)\rangle$$

Initial state is the groundstate of H_f+H_g

MPS results

 H_f Fermion mass term at the center of chain

2qubit operator

Hamiltonian

QC summary

- O dt = 1.0, 1.4
- O ibm_fez is used
- \bigcirc 10,000 shot is used

- O Pauli twirling is enabled/ DD is disabled
- O Unnecessary gates outside of the causal cone are removed

 H_f Fermion mass term at the center of chain

2qubit operator

G Gauss's law operator at the center of chain

4qubit operator

Successful only the very short time and error mitigation is inevitable

Quantum error mitigation (ZNE)

O running twirled circuits $U(U^{\dagger}U)^{\frac{\mathcal{N}-1}{2}}$ $\mathcal{N}=1,3,5$

O extrapolate to the zero noise limit

O Qistkit's native ZNE function is used

Quantum error mitigation (ZNE)

Successful in running Floquet circuit with $N_t = 10$

(Early stage of) Thermal plateaus are observed

Pauli twirling is important

ZNE is the most stable

IBM machine has the capability of simulating the physical phenomena

Quantum error mitigation (Gauss's laws)

O assume the global depolarizing channel as a noise model

$$\langle \hat{O} \rangle_{\text{raw}} = f \langle \hat{O} \rangle_{\text{ideal}} + \frac{1 - f}{2^{3N - 1}} \text{Tr}\hat{O}$$

O estimate *f* by measuring Gauss's law

$$\langle \hat{G} \rangle_{\text{ideal}} = 1 \longrightarrow \langle \hat{G} \rangle_{\text{noisy}} = f$$

O rescale observables by

$$\langle \mathscr{H}(x_c) \rangle_{\text{mit}} = \frac{\langle \mathscr{H}(x_c) \rangle_{\text{raw}}}{\langle G(x_c) \rangle_{\text{raw}}}$$

O is unique to LGT and computationally very cheap

Quantum error mitigation (Gauss's laws)

Successful in running Floquet circuit with $N_t = 10$

Pauli twirling is important

This is less good but still works/ Computational cost is much cheaper

Quantum error mitigation (ODR)

O assume the global depolarizing channel as a noise model

$$\langle \hat{O} \rangle_{\text{raw}} = f \langle \hat{O} \rangle_{\text{ideal}} + \frac{1 - f}{2^{3N - 1}} \text{Tr}\hat{O}$$

O run the same circuit with the "solvable" parameter

O rescale observables by

$$\langle \mathscr{H}(x_c) \rangle_{\text{mit}} = \frac{\langle \mathscr{H}(x_c) \rangle_{\text{raw}}}{f}$$

O is computationally very cheap

Quantum error mitigation (ODR)

This is less good but still works/ Computational cost is much cheaper

Quantum error mitigation (ODR): N>100 qubits

Successful in running Floquet circuit with $N_t = 10$ and beyond 100 qubits

We can simulate the physical phenomena in the quantum utility scale

Fidelity and circuit volume

Summary

O QC for QFT is anticipated but challenging

O Quantum simulation of Floquet circuits in near future devices is interesting and may be useful for showing quantum advantage

O Lattice gauge theories have complex Hamiltonians and may provide good playgrounds for testing the capability of QCs

Floquet circuit from Suzuki-Trotter decompositon

1st order Suzuki-Trotter decomposition

makes *dt* very large

$$U_{\rm F} = \mathrm{e}^{-\mathrm{i}H_{gf}dt} \mathrm{e}^{-\mathrm{i}(H_f + H_g)dt}$$

In total, $(8N-6)N_t + N$ CZ gates

Initial state is the groundstate of H_f+H_g