Numerical Analysis of Entanglement Entropy for 1 + 1 dimensional real scalar  $\phi^4$  theory using HOTRG

# ○ Takahiro Hayazaki<sup>A</sup> Daisuke Kadoh<sup>B</sup> Shinji Takeda<sup>A</sup> Gota Tanaka<sup>B</sup>

Kanazawa univ.<sup>A</sup>, Meijigakuin univ.<sup>B</sup> Tensor Network (2024) @ Kanazawa

November 22, 2024









Summary

### Entanglement Entropy (EE): Degree of entanglement .... Important value for critical phenomena

- EE is diverged on the quantum ciritical point
- extract central charge from EE
  - Introduced with CFT ··· Field Theory on cirical point
  - There are cases to obtain critical exponent in 2-dim.





Summary

### Analysis using Tensor Renormalized Group ✓ Numerical analysis of EE in the 2-dim. Ising model ↓ Apply to 2-dim. scalar field theory ↓ Verify its usefulness in field theory

Main Topic ●০০০০০০০০০০০ Summary

Reference

## 1+1-dim. real scalar field $\phi^4$ Theory

### **Lattice Action**

$$S_{\text{latt.}} = \sum_{n \in \Gamma} \left\{ \frac{1}{2} \sum_{\rho = x, \tau} \left( \phi_{n+\hat{\rho}} - \phi_n \right)^2 + \frac{\mu_0^2}{2} \phi_n^2 + \frac{\lambda}{4} \phi_n^4 \right\}$$
(1)

$$\begin{split} &\Gamma = \{n = (n_x, n_\tau) | n_\rho = 1, 2, \cdots L_\rho \ (\rho = x, \tau) \}, \quad \mu_0: \text{ bare mass,} \\ &\phi_{n+\rho L_\rho} = \phi_n: \text{ P.B.C.} \\ &\lambda > 0: \text{ coupling const.} \end{split}$$

# Definition of EE

 $\checkmark$  Separate the total system to 2 sub-systems for A & B

Main Topic

-

- ▶ Hilbert Space:  $\mathcal{H}_{tot} = \mathcal{H}_A \otimes \mathcal{H}_B$
- ► Total system size: L
- ▶ Sub-system size: L/2
- $\checkmark$  Total density matrix:  $\rho_{tot}$
- ✓ Reduced density matrix for A system:  $\rho_A \equiv T_{H_B} \rho_{H_B}$

**EE for A System** 

$$S_A \equiv -\mathrm{Tr}_{\mathcal{H}_A} \left[ \rho_A \log \rho_A \right]$$

(2)



Summary

Reference

## How to calculate EE

Density matrix calculation procedure [Luo and Kuramashi, 2023]

- Express  $\rho_A$  as a path integral
- ② Discretize the path integral and represent it as tensor network
  - ► Gauss-Hermite quadrature (*K*: # of sample points)
- Coarse-graining using tensor renormalization group
  - ▶ HOTRG [Xie et al., 2012] (*D*<sub>cut</sub>: Bond dimensions)
- Calculate  $\rho_A$  using coarse-grained tensors

```
Parameters: (\lambda, \mu_0^2), (K, L, D_{cut})
```

```
In the following, we will fix K = 256.
```



Summary

## How to calculate EE

Tensor network representation of  $\rho_A$  at zero temperature [Yang et al., 2016]





Summary

## How to calculate EE

Tensor network representation of  $\rho_A$  at zero temperature [Yang et al., 2016]





**Results** 

Summary

$$\lambda = 0.1, K = 256, \alpha = L_{\tau}/L_x = 16$$

#### Analysis procedure

- $D_{\rm cut} \to \infty$  extrapolation of  $S_A(L, \mu_0^2)$
- 2 Estimation of  $\mu_{0,c}^2$  by  $S_A$ - $\mu_0^2$  fitting
- $\textcircled{O} \quad L \rightarrow \infty \text{ extrapolation of renormalized } \mu_c^2$
- ( ) Calculating  $\lambda/\mu_c^2$

# $D_{\mathrm{cut}} \rightarrow \infty$ Extrapolation of EE

Main Topic

Fitting Function  $f(D_{\text{cut}}^{-1}) = \begin{cases} a_0 D_{\text{cut}}^{-1} + a_1 \\ a'_0 D_{\text{cut}}^{-a'_2} + a'_1 \end{cases}$ (3)

- $\checkmark D_{\rm cut}$  dependence of EE
  - Monotonically increasing for  $D_{\mathrm{cut}} \to \infty$
- ✓ Error:  $\frac{1}{2} |a_1 a'_1|$ ✓ Median:  $\frac{1}{2} (a_1 + a'_1)$



Summarv

Reference

## $D_{\mathrm{cut}} \rightarrow \infty$ Extrapolation of EE

Main Topic

Fitting Function  $f(D_{\text{cut}}^{-1}) = \begin{cases} a_0 D_{\text{cut}}^{-1} + a_1 \\ a'_0 D_{\text{cut}}^{-a'_2} + a'_1 \end{cases}$ (3)

- $\checkmark D_{\rm cut}$  dependence of EE
  - Monotonically increasing for  $D_{\mathrm{cut}} \to \infty$
- ✓ Error:  $\frac{1}{2} |a_1 a'_1|$ ✓ Median:  $\frac{1}{2} (a_1 + a'_1)$



Summarv

Reference

# Fitting for $S_A$ - $\mu_0^2$

Main Topic 000000●000 Summary

Reference

**Fitting Function** 

$$f(\mu_0^2) = \frac{q_0 + q_1(\mu_0^2 - \mu_{0,c}^2)^2 + q_2(\mu_0^2 - \mu_{0,c}^2)^4}{1 + p_0(\mu_0^2 - \mu_{0,c}^2)^2}$$
(4)



✓ Fitting parameters:  $p_0, q_0, q_1, q_2, \mu_{0,c}^2$ ✓  $\mu_{0,c}^2$ : The value of  $\mu_0^2$  at which EE peak ✓  $q_0$ : Peak EE value Fitting Function  $\mu_c^2(L) = d_0 \times \left(\frac{L}{2}\right)^{-d_2} + d_1 \quad (5)$ 

$$\checkmark \ L/2 = 2^6, 2^7, \cdots, 2^{12}$$

- ✓ This error is due to  $D_{\rm cut} \to \infty$  extrapolation.
  - Obtain extrapolated values with error



Result for  $\lambda/\mu_c^2$ 

Main Topic

Summary

Reference

- ✓ Results for  $\lambda = 0.1, 0.05$  (RD)
- ✓ [Kadoh et al., 2019] results (YL)
- $\checkmark$  Update  $\lambda/\mu_c^2$  for  $\lambda = 0.1, 0.05$

| $\lambda$ | $[\lambda/\mu_c^2]_{ m YL}$ | $[\lambda/\mu_c^2]_{ m RD}$ |
|-----------|-----------------------------|-----------------------------|
| 0.1       | 10.568(8)                   | 10.5807(5)                  |
| 0.05      | 10.72(2)                    | 10.739(1)                   |



Main Topic

Summary

Reference

## **Result for central charge**

**Fitting Function** 

$$f(m) = b_0 \times m + b_1$$
$$c = \frac{3}{\ln 2} \times b_0$$
 (6)

$$\checkmark S_A = \frac{c}{3} \ln L + k$$

✓ c: central charge

- $\checkmark k$ : constant independent of L
- $\checkmark$  x-axis: m, # of coarse-graining times (size  $L = 2^{m+1}$ )
- $\checkmark$  y-axis: EE at  $\mu_0^2 = \mu_{0,c}^2$



Main Topic

Summary

Reference

## **Result for central charge**

**Fitting Function** 

$$f(m) = b_0 \times m + b_1$$
$$c = \frac{3}{\ln 2} \times b_0$$
(6)

$$\checkmark S_A = \frac{c}{3} \ln L + k$$
  
$$\checkmark c_{\text{calc.}} = 0.499(2)$$
  
$$\checkmark c_{\text{exact}} = 0.5$$



Summary'

Summary ●○



- ▶ Monotonically increasing with respect to D<sub>cut</sub>
- $\blacklozenge~\mu_0^2$  dependence of EE
  - As the size increases, a tendency for divergence is observed near the critical point.
- Update  $\lambda/\mu_c^2$  for  $\lambda = 0.1, 0.05$

**Future Work** 

Summary ○●

## **analyze for smaller** $\lambda$ , and extrapolate $\lambda \to 0$

 $\clubsuit$  Compare the accuracy by calculating  $\mu^2_{0,c}$  using other calculation methods

- ► Method using X
- Impurity Tensor Method
- Two-dimensional fermion model
- Two-dimensional gauge theory
- Extend to 3D and 4D models

Reference

Summary

[Kadoh et al., 2019] Kadoh, D., Kuramashi, Y., Nakamura, Y., Sakai, R., Takeda, S., and Yoshimura, Y. (2019). Tensor network analysis of critical coupling in two dimensional 
\$\phi^4\$ theory. Journal of High Energy Physics, 2019(5).

[Luo and Kuramashi, 2023] Luo, X. and Kuramashi, Y. (2023). Entanglement and rényi entropies of (1+1)-dimensional o(3) nonlinear sigma model with tensor renormalization group.

[Xie et al., 2012] Xie, Z. Y., Chen, J., Qin, M. P., Zhu, J. W., Yang, L. P., and Xiang, T. (2012). Coarse-graining renormalization by higher-order singular value decomposition. *Physical Review B*, 86(4).

[Yang et al., 2016] Yang, L.-P., Liu, Y., Zou, H., Xie, Z. Y., and Meurice, Y. (2016). Fine structure of the entanglement entropy in the o(2) model. *Phys. Rev. E*, 93:012138.

# Appendix A: Path integral representation of $\rho_A$

$$[\rho_{A}]_{\phi_{-}^{A},\phi_{+}^{A}} = \frac{1}{Z} \left[ \int \prod_{\substack{-\infty < \tau < -0, \\ +0 < \tau < \infty}} \prod_{x \in A} d\phi(\tau, x) \ e^{-S_{E}[\phi]} \right] \delta_{A}[\phi_{-0} - \phi_{-}^{A}] \cdot \delta_{A}[\phi_{+0} - \phi_{+}^{A}]$$
(A.1)

#### where

$$\delta_A \left[\phi_0 - \phi\right] = \prod_{x \in A} \delta(\phi_0(x) - \phi(x)), \quad \phi_{\pm 0} \equiv \phi(\tau = \pm 0),$$
$$Z = \int \left[\prod_{-\infty < \tau < \infty} \prod_{x_1} d\phi(\tau, x)\right] e^{-S_E[\phi]}$$

# Appendix B: Fitting for $S_A - \mu_0^2 \ (\lambda = 0.05)$

Fitting Function  

$$f(\mu_0^2) = \frac{q_0 + q_1(\mu_0^2 - \mu_{0,c}^2)^2 + q_2(\mu_0^2 - \mu_{0,c}^2)^4}{1 + p_0(\mu_0^2 - \mu_{0,c}^2)^2}$$
(4)

✓ Fitting parameters:  $p_0, q_0, q_1, q_2, \mu_{0,c}^2$ ✓  $\mu_{0,c}^2$ : The value of  $\mu_0^2$  at which EE peaks ✓  $q_0$ : Peak EE value



# Appendix C: Calculation of $\mu^2$

#### 1-loop correction

$$\mu^{2} = \mu_{0}^{2} + 3\lambda A(\mu^{2})$$

$$A(\mu^{2}) = \frac{1}{L^{2}} \sum_{k_{1}=1}^{L} \sum_{k_{2}=1}^{L} \frac{1}{\mu^{2} + 4\sin^{2}(\pi k_{1}/L) + 4\sin^{2}(\pi k_{2}/L)}$$
(A.4)

- ✓ Self Consistent Eq.
  - Calculation using False Position Method

✓ Stopping condition

$$\blacktriangleright \ f(\mu^2) \equiv \mu^2 - \mu_0^2 - 3\lambda A(\mu^2)$$

• 
$$|f(\mu^2)| < \epsilon = 10^{-10}$$