DMRG calculation of the θ -dependent mass spectrum in the 2-flavor Schwinger model

- Akira Matsumoto (YITP, Kyoto U, RIKEN iTHEMS) collaboration with
- Etsuko Itou (YITP, Kyoto U, RIKEN iTHEMS) and Yuya Tanizaki (YITP, Kyoto U)
 - JHEP11 (2023) 231 [2307.16655] JHEP09 (2024) 155 [2407.11391]
 - Tensor Network 2024, 16 November 2024 @Kanazawa

Background: mass spectrum of QCD

- quark confinement in Quantum ChromoDynamics (QCD) ···· low-energy d.o.f. are not quarks but composite particles (hadrons)
- hadrons are much heavier than quarks

u/d quark: $m_{\mu} \sim 2$ MeV, $m_d \sim 5$ MeV π + meson (u, d): 140 MeV $\gg m_{\mu} + m_d$ proton (u, u, d): 938 MeV $\gg 2m_{\mu} + m_{d}$

nonperturbative calc. is essential to understand the properties of hadrons •

motivation:

Numerically investigate low-energy spectra of gauge theories such as QCD

Mass spectrum by lattice QCD

- well-established method: Monte Carlo simulation of the lattice gauge theory (Lagrangian formalism)
- obtain hadron masses from imaginary-time correlation functions •

[HAL QCD collab. (2024)]

Hamiltonian formalism

- logical Monte Carlo method cannot be applied to models with complex actions
- \rightarrow sign problem (finite density QCD, topological term, real-time evolution, \cdots) Tensor network and quantum computing in Hamiltonian formalism can be complementary approaches!
 - free from the sign problem
 - analyze excited states directly

aim of this work:

computing the hadron mass spectrum in Hamiltonian formalism that is applicable even when the sign problem arises

Short summary

- demonstrate three distinct methods to compute the mass spectrum of the 2-flavor Schwinger model at $\theta = 0$
 - (1) correlation-function scheme
 - (2) one-point-function scheme
 - (3) dispersion-relation scheme
- improve and extend them to the case of $\theta \neq 0$ (1)+(2) improved one-point-function scheme (3) dispersion-relation scheme
- $\boldsymbol{\theta}$ -dependent spectra by these schemes are • consistent with each other and with calculation in the bosonized model

JHEP11 (2023) 231

JHEP09 (2024) 155

Outline

- 1. 2-flavor Schwinger model and calculation strategy
- 2. Improved one-point-function scheme
- 3. Dispersion-relation scheme
- 4. Summary

Outline

- 1.2-flavor Schwinger model and calculation strategy
- 2. Improved one-point-function scheme
- 3. Dispersion-relation scheme
- 4. Summary

Schwinger model with two fermions

<u>Schwinger model = Quantum ElectroDynamics in 1+1d</u>

simplest nontrivial gauge theory sharing some features with QCD

$$\mathscr{L} = -\frac{1}{4g^2}F_{\mu\nu}F^{\mu\nu} + \frac{\theta}{4\pi}\epsilon_{\mu\nu}F^{\mu\nu} + \sum_{f=1}^{N_f} \left[i\bar{\psi}_f\gamma^{\mu}\left(\partial_{\mu} + iA_{\mu}\right)\psi_f - m\bar{\psi}_f\psi_f\right]$$

- quantum numbers: isospin J, parity P, G-parity $G = Ce^{i\pi J_y}$
- *P* and *G* are broken at $\theta \neq 0$

 $\rightarrow \eta$ becomes unstable due to $\eta \rightarrow \pi \pi$ decay and $\eta - \sigma$ mixing

sign problem if $\theta \neq 0$

$$N_{f} = 2 \longrightarrow \text{three "mesons"}$$

$$\pi_{a} = -i\bar{\psi}\gamma^{5}\tau_{a}\psi \quad : \quad J^{PG} = 1^{-+}$$

$$\sigma = \bar{\psi}\psi \qquad : \quad J^{PG} = 0^{++}$$

$$\eta = -i\bar{\psi}\gamma^{5}\psi \qquad : \quad J^{PG} = 0^{--}$$

Calculation strategy

setup: staggered fermion with open boundary •

$$H = \frac{g^2 a}{2} \sum_{n=0}^{N-2} \left(L_n + \frac{\theta}{2\pi} \right)^2 + \sum_{f=1}^{N_f} \left[\frac{-i}{2a} \sum_{n=0}^{N-2} \left(\chi_{f,n}^{\dagger} U_n \chi_{f,n+1} - \chi_{f,n+1}^{\dagger} U_n^{\dagger} \chi_{f,n} \right) + m_{\text{lat}} \sum_{n=0}^{N-1} (-1)^n \chi_{f,n}^{\dagger} \chi_{f,n} \right]$$

- rewrite to the spin Hamiltonian by Jordan-Wigner transformation after solving Gauss law and gauge fixing
- obtain the ground state as MPS by density-matrix renormalization group (DMRG)

C++ library of ITensor is used [Fishman et al. (2022)]

Outline

1. 2-flavor Schwinger model and calculation strategy

2. Improved one-point-function scheme

- 3. Dispersion-relation scheme
- 4. Summary

Correlation function?

- correlation function with spatial integral in lattice QCD
 - -> zero-momentum projection: $\sum \langle \mathcal{O}(0,0)\mathcal{O}(x,\tau) \rangle \sim e^{-M\tau}$
- equal-time correlator in Hamiltonian formalism $\rightarrow C(r) = \langle \mathcal{O}(0,0) \mathcal{O}(r,0) \rangle \sim \frac{1}{r^{\alpha}} e^{-Mr}$
- bond dim. must be large enough to see 1/r behavior

significant truncation effect

One-point-function scheme

<u>Regarding the boundary (defect) as the source of mesons,</u> obtain the masses from the one-point functions

- |bdry> has translational invariance in time direction

 $\langle \mathcal{O}(x) \rangle_{\text{obc}} \sim \langle \text{bdry} | e^{-Hx} \mathcal{O} | 0 \rangle_{\text{bulk}} \sim e^{-Mx}$

boundary state

 $\mathcal{O}(x)$

truncation effect is much smaller

. 1pt. function $\langle O(x) \rangle_{obc}$ measures the correlation with the boundary state |bdry>

 $p_{\tau} | \text{bdry} \rangle = 0$

cf.) wall source method

Some technical improvement

·We attach "the wings" to the lattice to control the boundary condition flexibly

e.g.) Dirichlet b.c. $\cdots m_{\text{wings}} \gg m$

The boundary must have the same quantum number as the target meson

Result of sigma and eta mesons

- . For the singlet mesons, we set the Dirichlet b.c. $m_{\text{wings}} = m_0 \gg m$
- Assuming $\langle \mathcal{O}(x) \rangle \sim Ae^{-Mx} + Be^{-(M+\Delta M)x}$,

we fit the effective mass by $M + \frac{\Delta M}{1 + Ce^{\Delta Mx}}$ to obtain M

N = 320, a = 0.25

Result of pion

- $\langle \pi(x) \rangle = 0$ for the Dirichlet b.c. since such a boundary is isospin singlet
- . We apply a flavor-asymmetric twist n in the wings to induce the isospin-br

$$n_{\text{wings}} = m_0 \exp(\pm i\Delta\gamma^5)$$
 $N = 320, a = 0.25$
reaking effect $m = 0.1, m_0 = 10, \Delta =$

Outline

1. 2-flavor Schwinger model and calculation strategy

2. Improved one-point-function scheme

3. Dispersion-relation scheme 4. Summary

Dispersion-relation scheme

<u>Obtain the dispersion relation $E = \sqrt{K^2 + M^2}$ directly</u> from the excited states (momentum excitations of the mesons)

- . ℓ -th excited state $|\Psi_{\ell}\rangle$
- Ok

btained by DMRG, adding the projection term to
$$H$$

$$H_{\ell} = H + W \sum_{\ell'=0}^{\ell-1} |\Psi_{\ell'}\rangle \langle \Psi_{\ell'}| \longrightarrow \text{cost function: } \langle \Psi_{\ell} | H | \Psi_{\ell} \rangle + W \sum_{\ell'=0}^{\ell-1} \left| \langle \Psi_{\ell'} | \Psi_{\ell} \rangle \right|^2 \quad W > 0$$

measure the energy E and the total r

= the lowest energy eigenstate satisfying $\langle \Psi_{\ell'} | \Psi_{\ell'} \rangle = 0$ for $\ell' = 0, 1, \dots, \ell - 1$

momentum
$$K = \sum_{f} \int dx \, \psi_{f}^{\dagger} (i\partial_{x} - A_{1}) \psi_{f}$$

Energy spectrum at $\theta = 0$

- energy gap: $\Delta E_{\ell} = E_{\ell} E_0$
- momentum square: $\Delta K_{\ell}^2 = \langle K^2 \rangle_{\ell} \langle K^2 \rangle_0$
- . identify the states by measuring quantum numbers: \mathbf{J}^2 , J_7 , $G = Ce^{i\pi J_y}$

Result of quantum numbers

• triplets: $J^2 = 2$, $J_7 = (0, \pm 1)$, G > 0

 \longrightarrow pion ($J^{PG} = 1^{-+}$)

• singlets: $J^2 = 0$, $J_7 = 0$,

G > 0 ($\ell = 13, 14, 22$) —> sigma meson ($J^{PG} = 0^{++}$) $G < 0 \ (\ell = 18,23) \longrightarrow \text{eta meson} \ (J^{PG} = 0^{--})$

	ℓ	$oldsymbol{J}^2$	J_z
singlets	0	0.0000003	-0.00000000
	13	0.0000003	0.00000000
	14	0.00000003	0.00000000
	18	0.00000028	0.00000006
	22	0.00001537	0.00000115
	23	0.00003607	-0.00000482

triplets

	ℓ	$oldsymbol{J}^2$	J_z	G
	1	2.00000004	0.99999997	0.2787
	2	2.00000012	-0.00000000	0.2787
S	3	2.00000004	-0.99999996	0.2787
	4	2.00000007	0.99999999	0.2773
	5	2.00000006	0.00000000	0.2773
	6	2.00000009	-0.99999998	0.2773
	7	2.0000010	1.00000000	0.2753
	8	2.00000002	0.00000000	0.2753
	9	2.00000007	-0.99999998	0.2753
	10	2.00000007	0.99999998	0.2735
	11	2.00000005	0.00000001	0.2735
	12	2.00000007	-0.99999999	0.2735
	15	1.99999942	0.99999966	0.2717
	16	2.00000052	0.00000000	0.2717
	17	2.00000015	-1.00000003	0.2717
	19	2.00009067	1.00004377	0.2771
	20	2.00002578	-0.00000004	0.2771
	21	2.00003465	-1.00001622	0.2771

Extension to $\theta \neq 0$

Result of dispersion relation

energy vs momentum²

. plot ΔE_{ℓ} against ΔK_{ℓ}^2 and fit the data by $\Delta E = \sqrt{b^2 \Delta K^2 + M^2}$ for each meson

8.0

Outline

1. 2-flavor Schwinger model and calculation strategy

2. Improved one-point-function scheme

3. Dispersion-relation scheme

4. Summary

Summary

- The two schemes give consistent results and look promising •
- $M_{\pi}(\theta) \propto |\cos(\theta/2)|^{2/3}$ $M_{\sigma}(\theta)/M_{\pi}(\theta) = \sqrt{3}$

consistent with predictions by the bosonization [Coleman (1976)] [Dashen et al. (1975)]

Future prospect

- Extension to 2+1 dimensions, where the gauge field is dynamical
- Application to the model with chemical potential: How the spectrum changes in the high-density region?
- Analyses using the wave functions of the excited states: scattering problem, entanglement property, etc.

Discussion

- (1) correlation-function scheme description descripti description description description description descript \bigotimes sensitive to the bond dimension of MPS —> \bigotimes quantum computer?
- (2) (improved) one-point-function scheme NOT sensitive to the bond dimension / easy to compute only the lowest state of the same quantum number as the boundary
- (3) dispersion-relation scheme

 - btain various states heuristically / directly see wave functions In the provide the state of the state of

Thank you for listening.

CFT-like behavior at $\theta = \pi$

bond dim. of MPS grows up with N at $\theta = \pi \rightarrow$ gapless?

- cf.) bond dim. D bounds the entanglement entropy of MPS: $S_{\rm EE} \leq \log D$
- 1+1d gapped : $S_{EE} \sim const$.
 - $\longrightarrow D$ is independent of the size N
- 1+1d gapless : $S_{\text{EE}} \sim \frac{c}{3} \log N$
 - —> increases by power $D \sim N^{c/3}$
- central charge c = 1 in this case (deviation due to the finite *a* exists)

CFT-like behavior at $\theta = \pi$

- [Coleman (1976)] • At $\theta = \pi$, the mass gap is exponentially small ~ $e^{-\#g^2/m^2}$ [Dempsey et al. (2024)]
 - cf.) SU(2)₁ WZW model with marginally relevant $J_L J_R$ deformation
- For the finite size L, the energy scale below O(1/L) is invisible $me^{i\frac{\theta}{2}}$ complex plane $\theta = \pi$ —> system is CFT-like if $L < e^{\#g^2/m^2}/g$ our setup : L = 80, m = 0.1, g = 1tiny mass gap • compare the numerical result of 1pt. functions m = 0with the analytic calc. of WZW model SPT trivially (Haldane) gapped phase

1 pt. function of π and σ at $\theta = \pi$

Dirichlet b.c. $\rightarrow \langle \sigma(x) \rangle \propto \frac{1}{\sqrt{\sin(\pi x/L)}}$

mirror-image method cf.) appendix A of JHEP09 (2024) 155

consistent with WZW model in the bulk

Correlation-function sheme

- spatial 2-point correlation function:
- effective mass: $M_{\pi,\text{eff}}(r) = -\frac{d}{dr} \log C_{\pi}(r)$
- 1/r behavior is observed only when the bond dim. is large
- mass is given by $r \rightarrow \infty$ extrapolation

$$C_{\pi}(r) = \langle \pi(x)\pi(y) \rangle \sim \frac{1}{r^{\alpha}} e^{-Mr} \quad r = |x - y|$$

$$\sim \frac{\alpha}{r} + M$$

Degeneracy of the ground states

- one ground state + three 1st excited states are observed by DMRG at $\theta = 2\pi$.
- energy gap $\sim \exp(-M_{\pi}L) \rightarrow 0$
- . solve $\Delta E_{\ell} = C_0 + \exp(-ML + C_1)$ for $\ell = 1$; $M = 0.41767, C_0 = -0.00002, C_1 = 2.33326$
- cf.) $M_{\pi} = 0.4175(9)$ by 1pt-fn. scheme
- DMRG is hard when L is small or $\theta \rightarrow \pi +$

Local observables

- . local scalar condensate $\bar{\psi}_1\psi_1 + \bar{\psi}_2\psi_2$ (isospin singlet) at $\theta = 2\pi$
- degeneracy in $L \to \infty$

Local isospin

local isospin $j_z(x) = \frac{1}{2}(\psi_1^{\dagger}\psi_1 - \psi_2^{\dagger}\psi_2)$ at $\theta = 2\pi$

• finite L : singlet + triplet $\longrightarrow L \rightarrow \infty$: doublet × doublet

interaction is suppressed exponentially and the edge modes are decoupled

Electric charge and electric field

. charge density: $\rho(x) = \psi_1^{\dagger} \psi_1 + \psi_2^{\dagger} \psi_2$

induced electric field: $L(x) = \int_0^x dy \rho(y)$

cancel the background electric field $E = \theta/2\pi = +1$ from θ term

L(x) = -1

