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Background: mass spectrum of QCD
• quark confinement in Quantum ChromoDynamics (QCD) 
… low-energy d.o.f. are not quarks but composite particles (hadrons) 

• hadrons are much heavier than quarks 

u/d quark: ,   
π+ meson (u, d):  
proton (u, u, d):  

• nonperturbative calc. is essential to understand the properties of hadrons

mu ∼ 2 MeV md ∼ 5 MeV

140 MeV ≫ mu + md

938 MeV ≫ 2mu + md
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motivation: 
Numerically investigate low-energy spectra of gauge theories such as QCD

u u d

u

u

d



Mass spectrum by lattice QCD
• well-established method:  

Monte Carlo simulation of the lattice gauge theory (Lagrangian formalism) 

• obtain hadron masses from imaginary-time correlation functions 

    ̶>  effective mass: C(τ) = ∑
x

⟨𝒪(0,0) 𝒪(x, τ)⟩ ∼ e−Mτ meff(τ) = − log
C(τ + 1)

C(τ)
≃ M
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[HAL QCD collab. (2024)]
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FIG. 13. The e↵ective masses for five baryons in lattice units. The fit range and fit results with statistical errors are
shown by black lines with gray bands.

baryon are shown in Fig. 14, where the e↵ective mass is defined as

me↵(⌧) ⌘ log
C(B)(⌧)

C(B)(⌧ + 1)
(49)

with C(B)(⌧) = C(O)(⌧) or C(D)(⌧). We observe a good plateau for each baryon corresponding to the ground
state saturation.

The baryon masses are obtained by fitting the correlators by a single exponential functional form with the
fit ranges chosen from the plateau regions in the e↵ective mass plots. In Figs. 13 and 14, the fit results are
shown by black lines with gray bands denoting the statistical errors. The numerical fit results with statistical
errors and the fit ranges are summarized in Table V. We also consider several di↵erent choices for the fit ranges
by changing the lower and/or upper bounds of ranges by several time slices, and estimate the systematic
errors in the baryon masses. The resulting systematic errors for the octet baryons are given in Table V. The
relative magnitudes of the finite volume e↵ect are expected to be ⇠ (mPS/mB)·e�(mPSL)/(mPSL) < O(10�4)
from ChPT with mPS(mB) being a relevant PS meson mass (baryon mass) [64], and thus are negligible in
the current precision. In the case of the ⌦ mass, the systematic errors are estimated not only from the fit
range dependence but also from the analysis with the variational method as will be described below. This
additional study is performed because the ⌦ mass is determined with the highest precision and is used for
the scale setting.

TABLE V. The results of the masses of the five baryons in lattice unit. The central values as well as statistical
errors (in the first parentheses) are obtained from the analyses of the wall-source data with the fit ranges given in the
table. The systematic errors (in the second parentheses) are estimated from the fit range dependence. In the case of
the ⌦ mass, the result of the variational method is additionally used to estimate the systematic error.

baryon mass fit range

N 0.40179(64)(+4
�20) [14,20]

⇤ 0.47947(154)(+18
�95) [22,27]

⌃ 0.51414(237)(+11
�105) [22,27]

⌅ 0.56469(74)(+58
�0 ) [27,31]

⌦ 0.71510(46)(+93
�5 ) [26,30]

We present the details of the analysis with the variational method for the ⌦ baryon. The 2⇥ 2 correlator
matrix is calculated with the Z3 noise method and the tail-cut technique at 16 temporal source locations, and
thus the total number of measurements is 1600 confs⇥ 4 rotations⇥ 16 sources⇥ 2 propagations = 204, 800.

effective mass hadron spectrum



Hamiltonian formalism
😣 Monte Carlo method cannot be applied to models with complex actions 

̶> sign problem (finite density QCD, topological term, real-time evolution, …) 

💡 Tensor network and quantum computing in Hamiltonian formalism 
     can be complementary approaches! 

👍 free from the sign problem 
👍 analyze excited states directly

aim of this work: 
computing the hadron mass spectrum 
in Hamiltonian formalism that is applicable  
even when the sign problem arises

4
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Short summary
• demonstrate three distinct methods to compute the mass spectrum  
of the 2-flavor Schwinger model at  

(1) correlation-function scheme 

(2) one-point-function scheme 

(3) dispersion-relation scheme 

• improve and extend them to the case of  

(1)+(2) improved one-point-function scheme  

(3) dispersion-relation scheme 

• θ-dependent spectra by these schemes are  
consistent with each other and with calculation in the bosonized model

θ = 0

θ ≠ 0
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Schwinger model with two fermions
Schwinger model = Quantum ElectroDynamics in 1+1d 

• simplest nontrivial gauge theory sharing some features with QCD 

 

• quantum numbers: 
  isospin ,  parity ,  G-parity  

•  and  are broken at  
̶> η becomes unstable 
      due to η→ππ decay and η-σ mixing

ℒ = −
1

4g2
FμνFμν +

θ
4π

ϵμνFμν +
Nf

∑
f=1

[iψ̄f γμ (∂μ + iAμ) ψf − mψ̄f ψf]

J P G = CeiπJy

P G θ ≠ 0

8

 ̶> three “mesons” 

  :   

           :   

     :  

Nf = 2

πa = − iψ̄γ5τaψ JPG = 1−+

σ = ψ̄ψ JPG = 0++

η = − iψ̄γ5ψ JPG = 0−−

sign problem if θ ≠ 0



Calculation strategy
• setup: staggered fermion with open boundary 

   

• rewrite to the spin Hamiltonian 
by Jordan-Wigner transformation  
after solving Gauss law and gauge fixing 

• obtain the ground state as MPS by  
density-matrix renormalization group (DMRG)

H =
g2a
2

N−2

∑
n=0

(Ln +
θ

2π )
2

+
Nf

∑
f=1 [ −i

2a

N−2

∑
n=0

(χ†
f,nUn χf,n+1 − χ†

f,n+1U
†
n χf,n) + mlat

N−1

∑
n=0

(−1)n χ†
f,n χf,n]

9

[Kogut & Susskind (1975)] 
[Dempsey et al. (2022)]

bond dim. for fixed truncation error

C++ library of ITensor is used 
[Fishman et al. (2022)]
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Correlation function?
• correlation function with spatial integral in lattice QCD 

̶> zero-momentum projection:  

• equal-time correlator in Hamiltonian formalism 

̶>  

̶> effective mass:  

• bond dim. must be large enough  
to see  behavior

∑
x

⟨𝒪(0,0)𝒪(x, τ)⟩ ∼ e−Mτ

C(r) = ⟨𝒪(0,0) 𝒪(r,0)⟩ ∼
1
rα

e−Mr

Meff(r) = −
d log C(r)

dr
∼

α
r

+ M

1/r

11

⚠ significant truncation effect

effective mass of π meson

M



One-point-function scheme
Regarding the boundary (defect) as the source of mesons,  
obtain the masses from the one-point functions 

• 1pt. function  measures the correlation with the boundary state  

•  has translational invariance in time direction 
̶> zero-momentum projection ̶> exponential decay 

 

👍 truncation effect is much smaller

⟨𝒪(x)⟩obc |bdry⟩

|bdry⟩

⟨𝒪(x)⟩obc ∼ ⟨bdry |e−Hx𝒪 |0⟩bulk ∼ e−Mx

12

𝒪(x)boundary state Euclidean space

pτ |bdry⟩ = 0

x

τ

cf.) wall source method



Some technical improvement
•We attach “the wings” to the lattice to control the boundary condition flexibly 

  e.g.) Dirichlet b.c. …  

•The boundary must have the same quantum number as the target meson

mwings ≫ m

13

small mass large masslarge mass

𝒪(x)



Result of sigma and eta mesons
• For the singlet mesons, we set the Dirichlet b.c.  

• Assuming ,  

we fit the effective mass by  to obtain 

mwings = m0 ≫ m

⟨𝒪(x)⟩ ∼ Ae−Mx + Be−(M+ΔM)x

M +
ΔM

1 + CeΔMx
M

14

eta meson 
(unstable at θ≠ 0)

sigma meson 
(stable at any θ) effective mass

 N = 320, a = 0.25

m = 0.1, m0 = 10



Result of pion
⚠  for the Dirichlet b.c. since such a boundary is isospin singlet 

• We apply a flavor-asymmetric twist  
in the wings to induce the isospin-breaking effect

⟨π(x)⟩ = 0

mwings = m0 exp(±iΔγ5)

15

pion effective mass
summary

 N = 320, a = 0.25

m = 0.1, m0 = 10, Δ = 0.1



Outline
1. 2-flavor Schwinger model and calculation strategy 

2. Improved one-point-function scheme 

3. Dispersion-relation scheme 

4. Summary

16



Dispersion-relation scheme
Obtain the dispersion relation  directly 
from the excited states (momentum excitations of the mesons) 

• -th excited state  
= the lowest energy eigenstate satisfying  for  

• obtained by DMRG, adding the projection term to  

   ̶> cost function:        

• measure the energy  and the total momentum 

E = K2 + M2

ℓ |Ψℓ⟩

⟨Ψℓ′ 
|Ψℓ⟩ = 0 ℓ′ = 0, 1, ⋯, ℓ − 1

H

Hℓ = H + W
ℓ−1

∑
ℓ′ =0

|Ψℓ′ 
⟩⟨Ψℓ′ 

| ⟨Ψℓ |H |Ψℓ⟩ + W
ℓ−1

∑
ℓ′ =0

⟨Ψℓ′ 
|Ψℓ⟩

2
W > 0

E K = ∑
f

∫ dx ψ†
f (i∂x − A1)ψf

17

[Stoudenmire & White (2012)] 
[Banuls et al. (2013)]



Energy spectrum at θ= 0
• energy gap:   

• momentum square:  

•identify the states by measuring quantum numbers:  ,  ,  

ΔEℓ = Eℓ − E0

ΔK2
ℓ = ⟨K2⟩ℓ − ⟨K2⟩0

J2 Jz G = CeiπJy

energy momentum2

18

triplets → π? 
singlets → σ or η?



Result of quantum numbers

• triplets: ,  ,   

̶> pion ( ) 

• singlets: ,  , 

 ( ) ̶> sigma meson ( ) 
 ( ) ̶> eta meson ( )

J2 = 2 Jz = (0, ± 1) G > 0

JPG = 1−+

J2 = 0 Jz = 0

G > 0 ℓ = 13,14,22 JPG = 0++

G < 0 ℓ = 18,23 JPG = 0−−

triplets

singlets

` J2 Jz G P

1 2.00000004 0.99999997 0.27872443 -6.819⇥10�8

2 2.00000012 -0.00000000 0.27872416 -6.819⇥10�8

3 2.00000004 -0.99999996 0.27872443 -6.819⇥10�8

4 2.00000007 0.99999999 0.27736066 7.850⇥10�8

5 2.00000006 0.00000000 0.27736104 7.850⇥10�8

6 2.00000009 -0.99999998 0.27736066 7.850⇥10�8

7 2.00000010 1.00000000 0.27536687 -8.838⇥10�8

8 2.00000002 0.00000000 0.27536702 -8.837⇥10�8

9 2.00000007 -0.99999998 0.27536687 -8.838⇥10�8

10 2.00000007 0.99999998 0.27356274 9.856⇥10�8

11 2.00000005 0.00000001 0.27356277 9.856⇥10�8

12 2.00000007 -0.99999999 0.27356274 9.856⇥10�8

15 1.99999942 0.99999966 0.27173470 -1.077⇥10�7

16 2.00000052 0.00000000 0.27173482 -1.077⇥10�7

17 2.00000015 -1.00000003 0.27173470 -1.077⇥10�7

19 2.00009067 1.00004377 0.27717104 -3.022⇥10�8

20 2.00002578 -0.00000004 0.27717020 -3.023⇥10�8

21 2.00003465 -1.00001622 0.27717104 -3.023⇥10�8

Table 1. The quantum numbers of the isospin triplet states. The index ` comes from the level of
each state in the original basis. The rows of the table are separated into each triplet.

` J2 Jz G P

0 0.00000003 -0.00000000 0.27984227 3.896⇥10�7

13 0.00000003 0.00000000 0.27865844 1.273⇥10�7

14 0.00000003 0.00000000 0.27508176 -2.765⇥10�8

18 0.00000028 0.00000006 -0.27390909 -6.372⇥10�7

22 0.00001537 0.00000115 0.26678987 7.990⇥10�8

23 0.00003607 -0.00000482 -0.27664779 5.715⇥10�7

Table 2. The quantum numbers of the isospin singlet states.

quantum number [25], and, if it is true, we can still identify the G-parity. This point will

be discussed more in details in Appendix B. We identify the lowest triplet ` = 1, 2, 3 as the

lowest modes of the pions (⇡+, ⇡0, ⇡�) since they have the quantum numbers consistent

with the pion, namely JPG = 1�+ and Jz = 0,±1. For the iso-singlets shown in Table 2,

we find that the ` = 13 state has the quantum number consistent with the sigma meson,

namely JPG = 0++ and Jz = 0. The ` = 18 state is consistent with the eta meson with

JPG = 0�� and Jz = 0. We identify these singlets with the lowest modes of the sigma and

eta mesons.

After identifying the quantum numbers, we plot the energy gap �E` = E`�E0 against

the momentum square �K2
`
=

⌦
K2

↵
`
�
⌦
K2

↵
0
to obtain the dispersion relation as shown in

– 26 –
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Extension to θ≠ 0
• G-parity is no longer the quantum number ̶> η disappears 

• singlet projection to obtain σ with reasonable computational cost 

  Hℓ = H + W
ℓ−1

∑
ℓ′ =0

|Ψℓ′ 
⟩⟨Ψℓ′ 

|+WJJ2

20

momentum2



Result of dispersion relation

• plot  against  and fit the data by  for each mesonΔEℓ ΔK2
ℓ ΔE = b2ΔK2 + M2

21

energy vs momentum2 Around , σ is 
contaminated by a remnant 
of η due to the mixing

θ/2π = 0.2

summary
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Summary
• The two schemes give consistent results and look promising 

• consistent with predictions by the bosonization 
        Mπ(θ) ∝ |cos(θ/2) |2/3 Mσ(θ)/Mπ(θ) = 3

23

[Coleman (1976)] [Dashen et al. (1975)]

Monte Carlo (reweighting) 
[Fukaya & Onogi (2003)]

calculation, we approximate the integral of Ssubtr
N (!!,m) by

the trapezoidal rule for the discrete set of !! points, but this
does not seem to be the reason for the large fluctuation in the
"/(2#)!0.5 region. The main nonperturbative contribution
comes from DetN and Ssubtr

N (!!,m) gives only perturbative
effects of order !!"2.
We suspect that this large fluctuation is an example of the

well-known phase problem. Simply increasing the statistics
might not improve the situation.
Of course in application to QCD, it will be important to

evaluate Ssubtr
N (!!,m) and other observables more precisely.

B. ! meson correlator and U„1… problem
As the final subject, we would like to present the result of

our exploratory measurement of the $ meson mass in order
to study the topological structure. The $ propagator consists
of two parts:

%$$&#"2 ! tr" '3
1
D '3

1
D # $ $4 ! tr" '3

1
D # tr" '3

1
D # $ ,

(36)

where the first term is the same as the flavor nonsinglet #
propagator and the second term gives the ‘‘hair-pin’’ or dis-
connected contribution to the flavor singlet operator. Because
the number of physical space-time points is only 16%16, we
compute the ‘‘hair-pin’’ contribution by brute force, namely
by solving the fermion propagator for all points without re-
lying on the noise method *40+ or Kuramashi method *41+.
Figure 15 shows the contribution of the second term in

each sector, whereas Fig. 16 shows the full (symmetrized) $
propagator at m#0.2 and "#0. We also present effective
mass plot in Fig. 17. We find that the fall of $ propagator is
steeper than that of # which gives qualitatively consistent
results with the U(1) problem, although it suffers from both
the theoretical errors as well as the large statistical errors
making quantitative studies difficult. One of the major
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applicable even in large θ region!

our work (DMRG)



Future prospect
• Extension to 2+1 dimensions, where the gauge field is dynamical 

• Application to the model with chemical potential: 
How the spectrum changes in the high-density region? 

• Analyses using the wave functions of the excited states: 
scattering problem, entanglement property, etc.

24



Discussion
(1) correlation-function scheme 
   👍 generic method applicable to any case / off-diagonal elements 
   😥 sensitive to the bond dimension of MPS ̶> 😊 quantum computer? 

(2) (improved) one-point-function scheme 
   👍 NOT sensitive to the bond dimension / easy to compute 
   😥 only the lowest state of the same quantum number as the boundary 

(3) dispersion-relation scheme 
   👍 obtain various states heuristically / directly see wave functions 
   😥 how to generate excited states efficiently?

25



Thank you for listening.
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CFT-like behavior at θ=π
bond dim. of MPS grows up with  at  → gapless? 

cf.) bond dim.  bounds the entanglement entropy of MPS:  

1+1d gapped：  
    ̶>  is independent of the size  

1+1d gapless：  

    ̶> increases by power  

• central charge  in this case 
(deviation due to the finite  exists)

N θ = π

D SEE ≲ log D

SEE ∼ const .

D N

SEE ∼
c
3

log N

D ∼ Nc/3

c = 1
a

27

typical 
bond dim.



CFT-like behavior at θ=π
• At , the mass gap is exponentially small  

cf.) SU(2)1 WZW model with marginally relevant  deformation 

• For the finite size , the energy scale below  is invisible 

̶> system is CFT-like if  
     our setup：  

• compare the numerical result of 1pt. functions  
with the analytic calc. of WZW model

θ = π ∼ e−#g2/m2

JLJR

L O(1/L)

L < e#g2/m2/g

L = 80, m = 0.1, g = 1

28

 complex planemei θ
2

SPT 
(Haldane) 
phase

trivially 
gapped

WZW CFT
m = 0

θ = π

tiny 
mass gap

[Coleman (1976)] 
[Dempsey et al. (2024)]



1pt. function of π and σ at θ=π

• Dirichlet b.c. →  

• isospin-breaking b.c. → 

⟨σ(x)⟩ ∝
1

sin(πx/L)

⟨π(x)⟩ ∝
sin[Δ(1 − 2x/L)]

sin(πx/L)

29

sigma meson 
at θ=π

pion 
at θ=π

mirror-image method  
cf.) appendix A of JHEP09 (2024) 155

consistent with 
WZW model 
in the bulk



Correlation-function sheme

• spatial 2-point correlation function:       

• effective mass:   

• 1/r behavior is observed only when the bond dim. is large 

• mass is given by  extrapolation 

Cπ(r) = ⟨π(x)π(y)⟩ ∼
1
rα

e−Mr r = |x − y |

Mπ,eff(r) = −
d
dr

log Cπ(r) ∼
α
r

+ M

r → ∞

30



Degeneracy of the ground states
• one ground state + three 1st excited states 

are observed by DMRG at θ= 2π. 

• energy gap  

• solve  for ; 
 

• cf.)  by 1pt-fn. scheme 

• DMRG is hard when  is small or 

∼ exp(−MπL) → 0

ΔEℓ = C0 + exp(−ML + C1) ℓ = 1

M = 0.41767, C0 = − 0.00002, C1 = 2.33326

Mπ = 0.4175(9)

L θ → π+

31

energy gap of the -th excited stateℓ

ΔE ∼ exp(−MπL)



Local observables
• local scalar condensate    (isospin singlet) at  

• degeneracy in 

ψ̄1ψ1 + ψ̄2ψ2 θ = 2π

L → ∞

32

small L large L



Local isospin

• local isospin    at  

• finite  :  singlet + triplet    ̶>     :  doublet × doublet 
  interaction is suppressed exponentially and the edge modes are decoupled

jz(x) =
1
2

(ψ†
1 ψ1 − ψ†

2 ψ2) θ = 2π

L L → ∞

33

small L large L



Electric charge and electric field
• charge density:  

• induced electric field: 

ρ(x) = ψ†
1 ψ1 + ψ†

2 ψ2

L(x) = ∫
x

0
dy ρ(y)

34

-1 +1

L(x) = − 1

charge density

electric field

cancel the background electric field 
 from θ termE = θ/2π = + 1


