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 Lagrangian approach
➢ Partition function (Path integral)

Tensor Networks in Physics

 Hamiltonian approach
➢ Wave func. of many-body systems

Approximation by TN

𝑂 𝑑𝑁  coefficients 𝑂 𝑑𝑁  terms

Representation as contraction of TN
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Graph representations of tensor networks

 Bonds (edges) = indices of tensor

Scalar Vector Matrix
4-leg tensor𝑥 𝑣𝑖 𝑀𝑖𝑗 𝑇𝑖𝑗𝑘𝑙

𝑖 𝑖 𝑗 𝑖

𝑗

𝑘

𝑙

 Bond connection = Contraction (sum up indices)

𝑖 𝑣𝑤

Inner product

𝑖 𝑣𝑀 𝑗

Matrix-vector product

𝑖 𝐵𝐴 𝑗𝑘

Matrix product

=
𝑖 𝑀 𝑗
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“Bond dimension”

= Dimension of index



Outline

 Introduction
➢ Transfer matrix method

 How to obtain TN representation of the partition function?
➢ Three examples of TN representations

 How to approximate contraction of TN?
➢ Real-space renormalization group approach

✓ TRG, HOTRG, BWTRG, etc.

➢ (Boundary MPS approach)

✓ CTMRG, DMRG, TEBD, VUMPS, etc

 How to evaluate physical quantities?
➢ Multi-impurity method with HOTRG and BWTRG

➢ Finite-size scaling analysis

 Summary



Transfer matrix method

 1D Ising chain

𝑆1 𝑆2 𝑆3 𝑆4 𝑆5

𝑆𝑖 = 1

𝑆𝑖 = −1

𝑆𝑖+1 = 1 −1
𝑇𝑆1,𝑆2 𝑇𝑆2,𝑆3 𝑇𝑆3,𝑆4

Transfer matrix

(periodic boundary)

(open/fixed boundary)
✓ Matrices are located between spins.

✓ Index of matrix corresponds to spin 

direction. 

Partition function

𝐾 ≡ 𝛽𝐽

𝑆1 𝑆2 𝑆3 𝑆4 𝑆5

𝑆𝑖 = +1 or −1
up down
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Evaluation of Z

 Eigenvalue decomposition of transfer matrix

Unitary matrix=

𝑍 = =

=𝑈𝑈† = 𝐼

Free energy per site in thermodynamic limit

𝑇2 𝑇2

𝑇 𝑇 Λ

=

=

𝑇4

coarse-graining

𝑈 Λ 𝑈†𝑇
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Spin-spin correlation function

𝑇 𝑇 𝑇𝑆 𝑇𝑆

𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 𝑆12

𝑇 𝑇 𝑇 𝑆 𝑆

𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 𝑆12

𝑇 𝑇

Some tensors are replaced by other tensors corresponding to physical observables. 

“impurity method”

Exponential decay for 𝐾 < ∞
No magnetic order
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TN approach for 2D models

1. TN representations of partition function

2. Contraction of TN

3. Evaluation of physical quantities



TN representation of the partition function

Sum over states Tensor contraction

• Tensor index corresponds to spin direction.

• One tensor contains two spin.

• In higher dimensional systems, a tensor has many indices (=2𝑑). 

𝑆1 𝑆2

𝑆4 𝑆3

𝑆1 𝑆2

𝑆4 𝑆3

𝐴𝑆1𝑆2𝑆3𝑆4 = 𝑒𝐾 𝑆1𝑆2+𝑆2𝑆3+𝑆3𝑆4+𝑆4𝑆1Ising model

𝐴
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TN representation of the partition function
10

Sum over states Tensor cont.

• TN structure is the same as original lattice.

• Bond index is index of eigenvalue.

• Spin is already traced out.

• # of indices is 2𝑑 in a 𝑑-dimensional system.

𝛿
𝑥

𝑦′

𝑦

𝑥′

𝜎

𝛿𝑥𝑦𝑥′𝑦′
𝜎 = 𝛿𝜎𝑥𝛿𝜎𝑦𝛿𝜎𝑥′𝛿𝜎𝑦′ 

𝑊

𝑉

𝛿𝛿

𝑊
=

Λ𝑈 𝑈†
ED

=
𝑋 = 𝑈 Λ

𝑋†

𝑋†
𝑋

𝑋

𝛿

𝑉

𝑋†

𝑇 =

Kronecker’s delta

𝑇 𝑇

𝑇 𝑇
𝑥𝑖𝑥𝑖

′

𝑦𝑖

𝑦𝑖
′



TN representation on dual lattice (dual representation)

𝜎1

𝜎2

𝜎3

𝜎4

𝑆1𝑆2

𝑆3 𝑆4

𝜎1 = 𝑆1𝑆4,
𝜎2 = 𝑆1𝑆2, …

𝜎1𝜎2𝜎3𝜎4 = 𝑆1𝑆2𝑆3𝑆4
2 = 1

K. Homma, SM, N. Kawashima, arXiv:2403.17309

Kramers-Wannier

duality Fourier

transformation

𝑇

𝑇𝐷

original rep.

original rep.

dual rep.

= 𝑇𝐷
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https://arxiv.org/abs/2403.17309


TN approach for 2D models

1. TN representations of partition function

2. Contraction of TN

3. Evaluation of physical quantities



Necessity of information compression

 Exact contraction still requires exponential cost.

𝜒
𝜒2

𝜒

=

𝜒

𝐿 = 𝜒𝐿

Sum over states Tensor contraction

≃ ?
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Real-space renormalization approach

 TRG (Tensor Renormalization Group)
Levin, Nave, Phys. Rev. Lett. 99, 120601 (2007)

𝑂 𝜒6

𝐴

Contraction

Truncated

SVD

𝑂 𝜒5

𝑍𝑁 ≃ Tr 𝑇(𝑡) =෍

𝑖,𝑗

𝑇𝑖𝑗𝑖𝑗
(𝑡)

=
𝑇 𝑡
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𝜒2 → 𝜒

https://smorita.github.io/TN_animation/

https://doi.org/10.1103/PhysRevLett.99.120601
https://smorita.github.io/TN_animation/


Reduction of computational cost for TRG

𝑂 𝜒6

𝐴 Contraction

Truncated

SVD

𝑂 𝜒5

𝑂 𝜒5Truncated

SVD

TRG with randomized SVD SM, Igarashi, Zhao, Kawashima, PRE 97, 033310 (2018)

Comp. cost of TRG is 𝑂 𝜒5

by avoiding the 4-leg tensors.
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https://doi.org/10.1103/PhysRevE.97.033310


Real-space renormalization approach

 HOTRG (Higher-order Tensor Renormalization Group)
Xie, et al., PRB 86, 045139 (2012)

𝑂 𝜒6

𝑂 𝜒7

Contraction

≈

𝑇 𝑛

𝑇 𝑛+1

𝑈 𝑛

𝑈 𝑛

𝑇 𝑛
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Construction of oblique projectors Iino, SM, Kawashima: Phys. Rev. B 100, 035449 (2019)

https://smorita.github.io/TN_animation/

https://doi.org/10.1103/PhysRevB.86.045139
https://doi.org/10.1103/PhysRevB.100.035449
https://smorita.github.io/TN_animation/


Advantage of HOTRG

TRG

HOTRG

2D Ising

𝜒 = 24

➢Higher-dimensional systems

𝑂 𝜒4𝑑−1

➢Accuracy

➢ Conservation of lattice structure

➢ No tensor decomposition

17



TRG variants for higher-dimensional systems

 Anisotropic TRG (ATRG)  Triad TRG
Adachi, Okubo, Todo, PRB 102, 054432 (2020)

𝑂 𝜒2𝑑+1

split

swap

squeeze

Kadoh, Nakayama, arXiv:1912.02414

𝑂 𝜒𝑑+3

3d Ising model

Bond dimension

triad = 3-leg

(d+1)-leg

18

https://doi.org/10.1103/PhysRevB.102.054432
https://arxiv.org/abs/1912.02414


Bond-Weighted Tensor Renormalization Group (BWTRG)

 Hyperparameter 𝑘
➢ 𝑘 = 0 : original TRG (no bond-weight)

➢ 𝑘 = − Τ1 2 : Expected optimal value

Adachi, Okubo, Todo, PRB 105, L060402 (2022)

✓ Its computational cost is the same order as TRG 𝑂 𝜒5

✓ It is more accurate than TRG and HOTRG.

𝑇
≃

Truncated 

SVD

𝑈
Σ
𝑉

Σ Τ1−𝑘 2

Σ Τ1−𝑘 2

=
Σ𝑘

𝐴

𝐵
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https://doi.org/10.1103/PhysRevB.105.L060402


Further improvements of TRG

 Global optimization using environment
➢ Second Renormalization Group (SRG)

➢ HOSRG Xie, et al. PRB (2012)

➢ CTM-TRG SM, Kawashima, PRB (2021)

➢ Triad-SRG Kadoh, Oba, Takeda, JHEP (2022)

Xie, et al., PRL 103, 160601 (2009)

 Entanglement filtering
➢ Tensor Network Renormalization (TNR)

➢ Loop TNR Yang, Gu, Wen, PRL (2017)

➢ Graph-Independent Local Truncation (GILT)
Hauru, et al., PRB (2018)

➢ Entanglement branching Harada, PRB (2018)

➢ Nuclear-norm regularization
Homma, Okubo, Kawashima, Phys. Rev. Research (2024)

Evenbly, Vidal, PRL 115, 180405 (2015)

“Environment Tensor”

“Disentangler” 𝑢 removes short-range 

entanglement in a loop

𝑖𝑗

𝑘 𝑙
≃

𝐸
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https://doi.org/10.1103/PhysRevB.86.045139
https://doi.org/10.1103/PhysRevB.103.045131
https://doi.org/10.1007/JHEP04(2022)121
https://doi.org/10.1103/PhysRevLett.103.160601
https://doi.org/10.1103/PhysRevLett.118.110504
https://doi.org/10.1103/PhysRevB.97.045111
https://doi.org/10.1103/PhysRevB.97.045124
https://doi.org/10.1103/PhysRevResearch.6.043102
https://doi.org/10.1103/PhysRevLett.115.180405


TN approach for 2D models

1. TN representations of partition function

2. Contraction of TN

3. Evaluation of physical quantities



Evaluation of physical quantities

1. Derivative of free energy

➢ Numerical differentiation

➢ Automatic differentiation (AD)
Liao, et al, PRX (2019)

2. Impurity method

Tr 𝑆𝑖 𝑒
−𝛽𝐻 = tTr

Multi-point correlations are necessary for high-order moments 𝑚𝑛 .

2D Ising model, 𝑇 = 𝑇𝑐

22

magnetization

“Reverse-mode AD”

https://doi.org/10.1103/PhysRevX.9.031041


Multipoint correlation functions

+ + + …

+ + + …

1

𝑁

1

𝑁2

𝑆1𝑆1 𝑆1𝑆2 𝑆1𝑆3

𝑆1 𝑆2 𝑆3

𝑁 terns

𝑁2 terns

We calculate the renormalized tensor of the summation of multipoint correlation functions

➢ 1st-order moment

➢ 2nd-order moment

𝐴𝑡
1

𝐴𝑡
2

≃

≃

“average of the local operators”

23

“average of all possible 2-point correlation functions”

?

?



Renormalization of multi-impurity tensors in HOTRG
24

SM, Kawashima, Comput. Phys. Comm 236, 65 (2019)

𝑁 = 240

𝐷 = 48 

Magnetization of Potts model

# of states

Would this approach be possible in BWTRG?

Use the same projector

➢ Recursion formula of multi-impurity tensors

https://doi.org/10.1016/j.cpc.2018.10.014


Multi-impurity method
for Bond-Weighted TRG
SM, Kawashima, arXiv:2411.13998

https://arxiv.org/abs/2411.13998


BWTRG on a triad network

𝜏𝑖 : “outer” bond-weight (diagonal)

𝜎𝑖 : “inner” bond-weight (diagonal)

𝐴𝑖 : isometry

➢Update rule
𝑘′ ≡

1 − 𝑘

2

෤𝜎𝑗 = 𝜏𝑗
𝑘

truncated

SVD

➢Partition function
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Initial tensors of Ising model w/o magnetic field

➢ Ising spins locate

at the center of plaquette

➢ 𝜏𝑗 corresponds to 𝑒𝐾𝑆𝑖𝑆𝑗

➢ 𝜎𝑗 , 𝐴𝑗 carry spin info

𝜎𝑖 =
1 0
0 1

𝜏𝑖 =
𝑒𝐾 𝑒−𝐾

𝑒−𝐾 𝑒𝐾

𝐴𝑗 𝑎𝑏𝑐
= 𝛿𝑎𝑏𝛿𝑏𝑐

𝜎𝑖 =
1 0
0 1

𝜏𝑖 =
2cosh 𝐾 0

0 2 sinh𝐾

𝐴𝑗 𝑎𝑏𝑐
= ቊ Τ1 2

0

(𝑎 + 𝑏 + 𝑐 = even)

Gauge transformation

𝑈 =
1

2

1 1
1 −1

TN with ℤ2 symmetry
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Initial impurity tensors

➢ Magnetization 

➢ Energy 

𝑆𝑖

“inner” impurity matrix

“outer” impurity matrix

Local physical quantities are expressed by replacing bond-weights

28



Update rule for impurity tensors

 From 𝑇 to 𝑆

 From 𝑆 to 𝑇
➢ The sum over the possible patterns is necessary to compute the higher order moments. 

✓ For the 2nd moment, we need 6+4 patterns.

𝑇1 ሚ𝑆1

෨𝑇1
2

(6 patterns) (4 patterns)

The number of impurities does not change.

29



Results: the 2D Ising model

 Physical quantities in the thermodynamic limit

➢ The relative error for BWTRG is smaller than 2.5% of the relative error for TRG.

➢ Both BWTRG and TRG have the same computational cost scaled as 𝑂 𝜒5 .

Energy ⟨𝑒⟩ Order parameter ⟨𝑚2⟩

30

𝜒 = 128

Exact 0.3762

TRG 0.3353

BWTRG 0.3752

Exact -1.44096

TRG -1.44582

BWTRG -1.44084 Exact -1.38358

TRG -1.39751

BWTRG -1.38377



Results: the 5-state Potts model

 Weakly first-order phase transition

➢ The proposed method can directly and more accurately observe jumps in physical quantities,

even in the weakly first-order phase transition.

Energy ⟨𝑒⟩ Order parameter 𝑚 2

Exact results: Baxter, J. Phys. C: Solid State Phys. 6, L445 (1973)

Baxter, J. Phys. A: Math. Gen. 15, 3329 (1982)
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𝜒 = 150

https://doi.org/10.1088/0022-3719/6/23/005
https://doi.org/10.1088/0305-4470/15/10/035


Finite-size scaling analysis in the 2D Ising model

 Finite-size scaling plot of 𝑚2

➢ FSS analysis of BWTRG slightly overestimates the critical exponents, 1/𝜈 and 𝛽/𝜈.

➢ Relative error in the estimated 𝑇𝑐 is about 10−8 in BWTRG and 10−6 in TRG at 𝜒 = 128.

𝐿 Τ2𝛽 𝜈 𝑚2 ≃ 𝑓(𝐿 Τ1 𝜈𝜏)

32

𝑇𝑐 = 2.26918511
Τ1 𝜈 = 1.0027
Τ2𝛽 𝜈 = 0.2554 

𝜒 = 128
𝑘 = Τ−1 2

Critical exponents

BWTRG

TRG

TRG

BWTRG



Dimensionless quantity 𝑋1

=

2

Gu, Wen, PRB (2009)

It visualized structure of fixed-point tensors

 Finite-size scaling form

From modular invariant partition function in CFT

𝑥𝛼 : scaling dimension

➢ Universal value at criticality

𝐿 = 210 ∼ 220

𝜒 = 128 𝑋1 = 1.7635955 for Ising universality class
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https://doi.org/10.1103/PhysRevB.80.155131


𝜒-dependence of relative error in 𝑇𝑐
34

𝛿𝑇𝑐 𝜒 ∼ 𝜉 Τ−1 𝜈 ∼ 𝜒 Τ−𝜅 𝜈

Pollmann, et al., PRL (2009)
➢ BWTRG with 𝑘 = Τ−1 2 has the largest exponent Τ𝜅 𝜈.

➢ Even considering computational cost, BWTRG is more efficient. 

BWTRG: 𝛿𝑇𝑐 ∼ 𝑡 Τ−𝜅 5𝜈 ∼ 𝑡−0.80 MPS approach: 𝛿𝑇𝑐 ∼ 𝑡 Τ−𝜅 3𝜈 ∼ 𝑡−0.68  (assuming 𝑡 ∼ 𝜒3)

https://doi.org/10.1103/PhysRevLett.102.255701


Summary

 TN approach to statistical physics

➢ TN representations of the partition function

➢ Approximation of TN contraction

✓ Real-space renormalization group approach

➢ Evaluation of physical quantities

✓Multi-impurity method for HOTRG and BWTRG

 Further issues

➢ Application to more interesting models

➢ Generalization to higher dimensional systems

➢ Improvement of BWTRG

35

𝑋†
𝑋

𝑋

𝛿

𝑉

𝑋†

𝑇 =

SM, Kawashima, arXiv:2411.13998

https://arxiv.org/abs/2411.13998
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