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we shall suppose that each a;: has value +1 or -1; in the next chapter it 
will be more convenient to let then have values 0 or 1; in general they can 
take any desired set of values. 

Let the total energy be 

where the summation is over all faces of the lattice, and for each face the 
i, j ,  k, 1 are the surrounding sites, arranged as in Figure 13.l(a). From 
(1.4.1), the partition function is 

~ = z n w ( q , ~ r , , o k , ~ i ) ,  (13.1.2) 

where the product is over all faces of the lattice, the sum is over all values 
of all the spins, and 

w(a , b , c , d) = exp[-&(a , b , c , d)lk BT] . (13.1.3) 

This w(a , b , c , d) is the Boltzmann weight of the intra-face interactions 
between spins a, b, c ,  d. 

Let N be the number of sites of the lattice and define 

K = lim z " ~ .  
N- m 

Then from (1.7.6), the free energy per site is 

Fig. 13.1. (a) The ordering of the sites i, j ,  k, 1 round a face of the square lattice; 
(b) the quadrant lattice whose partition function is the A,,,, in (13.1.8). 

CORNER TRANSFER MATRICES 

13.1 Definitions 

Notation 

In Chapters 7-10, much use has been made of the row-to-row transfer 
matrix V. Multiplication by this matrix corresponds to adding a row to the 
lattice. Each element of V is the total Boltzmann weight of a row of the 
lattice, as in (7.2.2) and (8.2.2). 

Another useful concept is the 'corner transfer matrix' (CTM), which 
corresponds to adding a quadrant to the lattice. In this section I shall define 
four such CTMs (one for each corner), and shall call them A, B, C, D. 
I shall also define four corresponding normalized matrices A,, B,, C,, D,; 
and four normalized and diagonalized matrices Ad, Bd, Cd, Dd. Here n and 
d are not indices, but merely denote 'normalized' and 'diagonalized', 
respectively. 

The ( a ,  d )  element of one of these matrices will be denoted by a further 
double suffix crd: e.g. Bad and (An)ad are the ( a ,  d )  elements of B and 
A,, respectively. 

The IRF Model 

Corner transfer matrices can be defined for any planar lattice model with 
finite-range interactions, but for definiteness let us consider a square lattice 
model with interactions round faces. For brevity I shall call this the 'IRF' 
model. It is defined as follows. 

To each site i of the square lattice associate a 'spin' ai. In this chapter 
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is applied to a fairly general square-lattice Ising model, including one-, two-, 
three-, and four-spin interactions. (Possible further generalizations are 
discussed in the summary.) 

The method is interesting for two reasons. First, it provides a rapidly 
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provements on the Bethe approximation. These can be used to locate phase 
transitions and critical points, and give very good numerical estimates of  the 
non-critical thermodynamic properties. (1-a~ Second, the method provides an 
alternative definition of the previously defined (~'5~ "corner transfer mat-  
rices" (CTMs). (For the solvable models, i.e., the zero-field Ising and eight- 
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8 ICE-TYPE MODELS 

Fig. 8.1. An arrangement of hydrogen ions on a 3 by 3 square lattice (with cyclic 
boundary conditions), satisfying the ice rule: (a) the positions of the hydrogen ions 
on the bonds, (b) the corresponding electric dipoles, (c) the corresponding line 

representation. 

Of course real ice, and other crystals, are three-dimensional, but unfor- 
tunately the only exact solutions we have for three-dimensional ice-type 
models are for very special 'frozen' states (Nagle, 1969b). 

In this chapter only ice-type models on the square lattice will be con- 
sidered. They exhibit similar behaviour to three-dimensional reality, and 
have the enormous advantage of being solvable! (In particular, square ice 
is really quite a good approximation to real ice, since the residual entropy 
is only weakly sensitive to the structure of the lattice.) 

The hydrogen-ion bonds between atoms form electric dipoles, so can 
conveniently be represented by arrows placed on the bonds pointing toward 
the end occupied by the ion, as in Fig. 8.l(b). The ice rule is then equivalent 
to stating that at each site (or vertex) of the lattice there are two arrows 
in, and two arrows out. There are just six such ways of arranging the 
arrows, as shown in Fig. 8.2. (For this reason the ice-type models are 
sometimes known as 'six-vertex' models, as opposed to the 'eight-vertex' 
model of Chapter 10.) 

In general, each of these six local arrangements will have a distinct 
energy: let us call them &I, . . . , c6, using the ordering of Fig. 8.2. Then the 
partition function is given by (8.1. I ) ,  where 

and n, is the number of vertices in the lattice of type j .  

Fig. 8.2. The six arrow configurations allowed at a vertex, and the corresponding 
line configurations. 



There are several mappings from the IRF to the Vertex:
・Modern (2000-2024) TN formulations use the Vertex representations.

(*) When diagonal interactions are missing, 
     Chess Board type Vertex lattice naturally appears.
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Not always applicable.   
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There are several mappings from the IRF to the Vertex:
・Modern (2000-2024) TN formulations use the Vertex representations.

(*) via SVD, one obtains an anisotropic Vertex model.
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(*) Insertion of the “4-leg delta tensor” creates an anisotropic (?)
     vertex lattice in the diagonal direction.
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    performing such mapping!
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4 are both the upper-left corner spin, so 

Fix the boundary spins, i.e. those on the sites shown as triangles in Fig. 
13.l(b), to have their ground-state values. For instance, for the ferro- 
magnetic Ising model they can all be chosen to be +l. 

Let o denote all the spins {q , . . . , a,}; and d all the spins 
(4 , . . . , dm}. Define 

where the product is now over the tm(m + 1) faces in Fig. 13.l(b), and 
the sum is over all spins on sites denoted by solid circles. Note that the 
spins q , . . . , dm are not summed over, so the RHS of (13.1.8) is a function 
of a a n d  d. 

Define B,,d in the same way as only with Fig. 13.l(b) rotated 
anti-clockwise through 90°, so that q , . . . , a, lie on the bottom edge, and 
4 , . . . , dm on the left. Similarly, define Co,d, Da,d by rotating Fig. 13.l(b) 
twice more through 90". 

Now consider the lattice shown in Fig. 13.2. Divide it by two cuts into 
four quadrants of equal size, as indicated. Let q be the centre spin, and 

Fig. 13.2. The lattice with partition function (13.1.10). Boundary spins (on sites 
denoted by triangles) are fixed at their ground state values; q is the centre spin; 
o is the set of all spins (including s) on the lower half of the vertical heavy line; 
d is the set of spins (including a) on the right half of the horizontal heavy line; 

and similarly for d', d". 

Baxter implicitly introduced 2-leg
“delta tensor” at the corner.
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In the next step, all the 
delta tensors disappear 
(in the explicit manner).
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One-step application of TNR

W W W W

W W W W

W W W W

W W W W



Corner Transfer Matrix (IRF)

Each double (delta) indices can be treated as
single index, since they are always the same.

Half-row/column ™

Transfer Matrix

Graphical Representations



Corner Transfer Matrix RG (in IRF rep.)

do NOT to try to map the model to any on of the vertex one.



application to the Stacked Pentagon lattice

ar
X

iv
:2

40
3.

15
82

9v
2 

 [c
on

d-
m

at
.st

at
-m

ec
h]

  5
 Ju

l 2
02

4

Journal of the Physical Society of Japan FULL PAPERS

Ferromagnetic Ising model on the hierarchical pentagon lattice

Takumi Oshima1, and Tomotoshi Nishino2 *

1Department of Physics, Faculty of Science, Kobe University, Kobe 657-8501, Japan
2Department of Physics, Graduate School of Science, Kobe University, Kobe 657-8501, Japan

Thermodynamic properties of the ferromagnetic Ising model on the hierarchical pentagon lattice is studied by means

of the tensor network methods. The lattice consists of pentagons, where 3 or 4 of them meet at each vertex. Correlation

functions on the surface of the system up to n = 10 layers are evaluated by means of the time evolving block decimation

(TEBD) method, and the power low decay is observed in the high temperature region. The recursive structure of the

lattice enables complemental numerical study for larger systems, by means of a variant of the corner transfer matrix

renormalization group (CTMRG) method. Calculated spin expectation value shows that there is a mean-field type order-

disorder transition at T1 = 1.58 on the surface of the system. On the other hand, the bulk part exhibits the transition at

T2 = 2.269. Consistency of these calculated results is examined.

1. Introduction

The order-disorder phase transition has been one of the cen-
tral concern in modern statistical physics.1) The Ising model2)

has been extensively studied as a theoretical model of mag-
netic materials that consists of locally interacting molecular
magnetic moments.3) On the square lattice, presence of the
phase transition was proven by Peierls,4) and the exact for-
mula for the free energy in the thermodynamic limit was later
obtained by Onsager.5) The concept of the renormalization
group (RG) provides the unified picture on the singular be-
havior of thermodynamic functions around the phase transi-
tion point.6–8) The nature of the second-order phase transition
on the regular lattice that can be uniformly drawn on the flat

plane is well understood from the view point of the conformal
field theory.9)

The Ising model on the Cayley tree lattices has been known
as a reference model, where the partition function of the
whole system can be easily obtained by taking spin configura-
tion sum from the boundary sites.10) Although the correspond-
ing free energy is an analytic function of the temperature T ,
those bulk spins deep inside the system, which are around
the root of the tree, can posses finite spontaneous magnetic
moment below the transition temperature, under the presence
of infinitesimally weak external field.11–13) The transition is
mean-field like, as it is explained from the self-consistent
study on the Bethe lattice.10, 14)

Similarly, on the hyperbolic (5, 4) lattice, where four pen-
tagons meet at each vertex, presence of the mean-field like
phase transition in the bulk part of the system was confirmed
numerically for the ferromagnetic Ising model by means of
the corner transfer matrix renormalization group (CTMRG)
method15–19) adapted to the hyperbolic lattice structure.20, 21)

Since the (5, 4) lattice is a regular lattice on the negatively
curved surface, which has a finite curvature radius R as the
typical length scale, the bulk part of the system cannot be
critical, where there is scale invariance.22) Thus the correla-
tion length of the model (along the geodesics) is always fi-
nite, even at the bulk transition temperature.23) It is naturally
expected that ferromagnetic Ising models on the hyperbolic

*nishino@kobe-u.ac.jp
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Fig. 1. Structure of the hierarchical pentagon lattice in the case n = 4. We

regard σ0
0

and σ0
1

at the top as the bulk spins, and those σ4
j

from j = 0 to

j = m(4) = 16 at the bottom as the surface spins.

(p, q) lattices, where q numbers of p-gons meet at the lattice
point, share the mean-field nature.24)

Recently, Asaduzzaman et al performed the Monte Carlo
simulation for the Ising model on the hyperbolic (3, 7) lat-
tice.25) From the numerical study on finite size systems, they
confirmed presence of the power-law decay of the correla-
tion function on the boundary of the system at any temper-
ature. Okunishi and Takayanagi have rigorously shown the
power-law decay along the boundary of the trivalent Cayley
tree lattice,26) which is the hyperbolic (∞, 3) lattice, and rein-
terpreted the system from the view point of the Ads/CFT cor-
respondence.27–30) One of the theoretical interest on the hy-
perbolic (p, q) lattice is to confirm the presence, or absence,
of the order-disorder transition at the system boundary.

Motivated from these recent studies focused on the hyper-
bolic lattices, in this article we analyze the thermodynamic
properties of the ferromagnetic Ising model on the hierarchi-
cal pentagon lattice shown in Fig. 1. Typically the case when
there are n = 4 layers of horizontally aligned pentagons is
drawn. It should be noted that all the pentagons are repre-
sented by the rectangular shape, so that the hierarchical lat-
tice structure can be captured systematically. There are 2n − 1
pentagons in total. Three or four pentagons meet on each ver-
tex, and the number is exceptionally 2 at the system boundary.

1

Pentagons 
are stacked!

Consider  
the Ising Model 
on the lattice

arXiv: 2403.15829

something like a fractal
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(p, q) lattices, where q numbers of p-gons meet at the lattice
point, share the mean-field nature.24)

Recently, Asaduzzaman et al performed the Monte Carlo
simulation for the Ising model on the hyperbolic (3, 7) lat-
tice.25) From the numerical study on finite size systems, they
confirmed presence of the power-law decay of the correla-
tion function on the boundary of the system at any temper-
ature. Okunishi and Takayanagi have rigorously shown the
power-law decay along the boundary of the trivalent Cayley
tree lattice,26) which is the hyperbolic (∞, 3) lattice, and rein-
terpreted the system from the view point of the Ads/CFT cor-
respondence.27–30) One of the theoretical interest on the hy-
perbolic (p, q) lattice is to confirm the presence, or absence,
of the order-disorder transition at the system boundary.

Motivated from these recent studies focused on the hyper-
bolic lattices, in this article we analyze the thermodynamic
properties of the ferromagnetic Ising model on the hierarchi-
cal pentagon lattice shown in Fig. 1. Typically the case when
there are n = 4 layers of horizontally aligned pentagons is
drawn. It should be noted that all the pentagons are repre-
sented by the rectangular shape, so that the hierarchical lat-
tice structure can be captured systematically. There are 2n − 1
pentagons in total. Three or four pentagons meet on each ver-
tex, and the number is exceptionally 2 at the system boundary.

1

arXiv: 2403.15829
Connecting the center of adjacent pentagons 
one obtains the Kayleigh Tree
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Ferromagnetic Ising model on the hierarchical pentagon lattice
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Thermodynamic properties of the ferromagnetic Ising model on the hierarchical pentagon lattice is studied by means

of the tensor network methods. The lattice consists of pentagons, where 3 or 4 of them meet at each vertex. Correlation

functions on the surface of the system up to n = 10 layers are evaluated by means of the time evolving block decimation

(TEBD) method, and the power low decay is observed in the high temperature region. The recursive structure of the

lattice enables complemental numerical study for larger systems, by means of a variant of the corner transfer matrix

renormalization group (CTMRG) method. Calculated spin expectation value shows that there is a mean-field type order-

disorder transition at T1 = 1.58 on the surface of the system. On the other hand, the bulk part exhibits the transition at

T2 = 2.269. Consistency of these calculated results is examined.

1. Introduction

The order-disorder phase transition has been one of the cen-
tral concern in modern statistical physics.1) The Ising model2)

has been extensively studied as a theoretical model of mag-
netic materials that consists of locally interacting molecular
magnetic moments.3) On the square lattice, presence of the
phase transition was proven by Peierls,4) and the exact for-
mula for the free energy in the thermodynamic limit was later
obtained by Onsager.5) The concept of the renormalization
group (RG) provides the unified picture on the singular be-
havior of thermodynamic functions around the phase transi-
tion point.6–8) The nature of the second-order phase transition
on the regular lattice that can be uniformly drawn on the flat

plane is well understood from the view point of the conformal
field theory.9)

The Ising model on the Cayley tree lattices has been known
as a reference model, where the partition function of the
whole system can be easily obtained by taking spin configura-
tion sum from the boundary sites.10) Although the correspond-
ing free energy is an analytic function of the temperature T ,
those bulk spins deep inside the system, which are around
the root of the tree, can posses finite spontaneous magnetic
moment below the transition temperature, under the presence
of infinitesimally weak external field.11–13) The transition is
mean-field like, as it is explained from the self-consistent
study on the Bethe lattice.10, 14)

Similarly, on the hyperbolic (5, 4) lattice, where four pen-
tagons meet at each vertex, presence of the mean-field like
phase transition in the bulk part of the system was confirmed
numerically for the ferromagnetic Ising model by means of
the corner transfer matrix renormalization group (CTMRG)
method15–19) adapted to the hyperbolic lattice structure.20, 21)

Since the (5, 4) lattice is a regular lattice on the negatively
curved surface, which has a finite curvature radius R as the
typical length scale, the bulk part of the system cannot be
critical, where there is scale invariance.22) Thus the correla-
tion length of the model (along the geodesics) is always fi-
nite, even at the bulk transition temperature.23) It is naturally
expected that ferromagnetic Ising models on the hyperbolic

*nishino@kobe-u.ac.jp

i = 1

i = 2

i = 3

i = 0

i = 4

j = 0 1

0 21

0 421 3

0 842 61 53 7
16

Bulk

Surface

Fig. 1. Structure of the hierarchical pentagon lattice in the case n = 4. We

regard σ0
0

and σ0
1

at the top as the bulk spins, and those σ4
j

from j = 0 to

j = m(4) = 16 at the bottom as the surface spins.

(p, q) lattices, where q numbers of p-gons meet at the lattice
point, share the mean-field nature.24)

Recently, Asaduzzaman et al performed the Monte Carlo
simulation for the Ising model on the hyperbolic (3, 7) lat-
tice.25) From the numerical study on finite size systems, they
confirmed presence of the power-law decay of the correla-
tion function on the boundary of the system at any temper-
ature. Okunishi and Takayanagi have rigorously shown the
power-law decay along the boundary of the trivalent Cayley
tree lattice,26) which is the hyperbolic (∞, 3) lattice, and rein-
terpreted the system from the view point of the Ads/CFT cor-
respondence.27–30) One of the theoretical interest on the hy-
perbolic (p, q) lattice is to confirm the presence, or absence,
of the order-disorder transition at the system boundary.

Motivated from these recent studies focused on the hyper-
bolic lattices, in this article we analyze the thermodynamic
properties of the ferromagnetic Ising model on the hierarchi-
cal pentagon lattice shown in Fig. 1. Typically the case when
there are n = 4 layers of horizontally aligned pentagons is
drawn. It should be noted that all the pentagons are repre-
sented by the rectangular shape, so that the hierarchical lat-
tice structure can be captured systematically. There are 2n − 1
pentagons in total. Three or four pentagons meet on each ver-
tex, and the number is exceptionally 2 at the system boundary.

1
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There is an Ising spin σi
j = ±1 shown by the open circle on

each vertex, where the index i specifies the row from the top
i = 0 to the bottom i = n, and where j specifies the horizontal
location from the left j = 0 to the right j = 2i . In order not
to use nested index in the following equations, we introduce
the notation m(i) = 2i , where m(i) + 1 is the number of sites
on the i-th row. The lattice has a geometrical analogy with
the Cayley tree, in the sense that we obtain the binary tree by
connecting the centers of vertically touching pentagons. Thus
the upper boundary of the lattice with i = 0 corresponds to
the root of the tree, and the lower boundary with i = n corre-
sponds to the leaves. Considering the analogy, we regard σ0

0

and σ0
1 at the top as the bulk spins, and σn

j for arbitrary j at
the bottom as the surface spins.

Pairwise Ising interaction is present between each neigh-
boring spins connected by the line. The Hamiltonian of the
system is given by

Hn

(

{σ}
)

= −J

n
∑

i=0

m(i)−1
∑

j=0

σi
jσ

i
j+1 − J

n−1
∑

i=0

m(i)
∑

j=0

σi
jσ

i+1
2 j , (1)

where J > 0 is the ferromagnetic coupling constant. In the
left hand side, all the spins contained in the system is shortly
denoted by {σ}. We assume that there is no external magnetic
field, unless otherwise noted. The thermodynamic properties
of the system can be obtained from the partition function

Zn(T ) =
∑

{σ}

exp

[

−
Hn

(

{σ}
)

kBT

]

, (2)

where T is the temperature, and where kB is the Boltzmann
constant. We set the temperature unit so that kB = 1 is satis-
fied. The sum of the Boltzmann weight of the whole system
is taken for all the possible spin configurations.

In this article, we perform numerical study on the system
by the time evolving block decimation (TEBD) method31, 32)

up to the case n = 10, and complementary by the modified
CTMRG method for larger systems. We show that the surface
spin expectation value at the center of the n-th row ⟨σn

m(n)/2⟩

is non-zero below T1 = 1.58, when n is sufficiently large.
On the other hand, the bulk spin expectation value ⟨σ0

0
⟩ =

⟨σ0
1⟩ becomes non-zero from higher temperature T2 = 2.269.

When T is larger than T1, the correlation function along the
surface row shows power-law decay.

The structure of this article is as follows. In Sec. II, we
shortly explain the way how to apply TEBD method, and
show the calculated entanglement entropy and the correlation
function. In Sec. III we explain the numerical algorithm of the
modified CTMRG method, which is complementary used for
thermodynamic analysis, and show the calculated numerical
results. Conclusions are summarized in the last section, and
the remaining problems are discussed.

2. Application of the TEBD Method

In this section we explain how to perform the thermody-
namic study on the Ising model on the hierarchical pentagon
lattice, by means of the TEBD method. Let us consider the
distribution function

Gn

(

σn
0, · · · ,σ

n
m(n)

)

=
∑

{σ0}

· · ·
∑

{σn−1}

exp

[

−
Hn

(

{σ}
)

kBT

]

, (3)

G2

G1

G1
G2

G3

U1

U 2

U0

G0

Fig. 2. Pictorial representation of the transfer matrix multiplications in

Eq. (5) from i = 0 to i = 2.

which represents the relative probability of appearance of the
spin configuration σn

0, · · · ,σ
n
m(n) at the bottom boundary. The

configuration sum is taken for those row spins σi
0, · · · ,σ

i
m(i),

which are shortly denoted by {σi }, from i = 0 to i = n − 1.
The left hand side can be written in the short form Gn

(

{σn}
)

.
Introducing the transfer matrix

Ui

(

{σi+1} | {σi }
)

= Ui

(

σi+1
0 , · · ·σ

i+1
m(i+1) |σ

i
0, · · · ,σ

i
m(i)

)

= exp

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

J

kBT

m(i+1)−1
∑

j=0

σi+1
j σ

i+1
j+1 +

J

kBT

m(i)
∑

j=0

σi
jσ

i+1
2 j

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (4)

we can obtain the distribution function in Eq. (3) by way of
the successive multiplication of the transfer matrix

Gi+1

(

{σi+1}
)

=
∑

{σi }

Ui

(

{σi+1} | {σi }
)

Gi

(

{σi }
)

, (5)

starting from the initial distribution

G0

(

σ0
0,σ

0
1

)

= exp

[

J

kBT
σ0

0 σ
0
1

]

(6)

at the top of the system. Figure 2 shows the pictorial repre-
sentation of the transfer matrix multiplication in Eq. (5) from
n = 0 to n = 2. Configuration sums are taken for the spins
shown by the black dots. Since Gn

(

{σn}
)

is the function of
m(n)+ 1 = 2n + 1 number of the surface spins {σn}, direct nu-
merical calculation can be performed only up to several lay-
ers, around n = 5 or n = 6.

If we regard Gn

(

{σn}
)

as the quantum amplitude, the cor-
responding quantum state is expected to be weakly entan-
gled, since the lattice can be horizontally separated by cut-
ting only n + 1 horizontal bonds along the vertical cut, sim-
ilar to the multi-scale entanglement renormalization Ansatz
(MERA) network.33, 34) Thus Gn

(

{σn}
)

could be precisely rep-
resented by means of the matrix product state (MPS).35, 36)

Since the transfer matrix in Eq. (4) consists of horizontal
product of local factors, the transfer matrix multiplication in
Eq. (5) can be efficiently performed step by step by means of
the TEBD method.31, 32)

We explain some details in the numerical transfer matrix
multiplication, when the distribution function is represented
in the form of MPS. Those readers who are not interested in

2

Bulk 

Surface

a variant of CTMRG can be applied to this system
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Fig. 7. The smallest HCTM P ab
0 ζξ

in Eq. (20) and the CTM C ab
0 ξ

in

Eq. (21), which are located around the bottom of the system. Those con-

tracted tensor legs are shown by the filled marks.

C’

P’’1
W

B W

0P 0P

0C 0P
1

c

e
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ζ ξ

d
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η

ξ

a b a b

e c e

c e

d

ζ

ξη

ξ

Fig. 8. The extension process of the HCTM in Eq. (23), and that of the

CTM in Eq. (24).

transfer matrices (CTM), which are located around the bottom
left or the bottom right corners of the system. The smallest
one around the bottom left is expressed as

C ab
0 e =

∑

cd

Ba
c W a b

cde Bcd Bde =
∑

c

Ba
c P ab

0 ce , (21)

and similarly the one around the bottom right as

C ab
0 c =

∑

de

W a b
cde Bcd BdeBb

e =
∑

e

P ab
0 ce Bb

e . (22)

For the latter convenience, let us use greek letters for those
spins on the surface, in the manner as P ab

0 ζξ , C ab
0 ξ

and C ab
0 ζ .

The recursive structure of the hierarchical pentagon lattice
enables the systematic extension of the HCTM. Taking the
contraction among W and two P0 in the manner

P′′1
ab
ce
ηξ
=
∑

dζ

W a b
cde P cd

0 ηζ P de
0 ζξ , (23)

we obtain the extended HCTM. It should be noted that one can
choose arbitrary letter for the tensor legs, since they are just
the dummy indices that are used for the contractions among
tensors. By definition, P′′1 satisfies the left-right symmetry

P′′1
ab
ce
ηξ
= P′′1

ba
ec
ξη

. Similar to Eq. (23), the extension of the CTM

at the bottom left corner is performed combining W, C0, and
P0 as

C′1
ab
e
ξ
=
∑

cdζ

Ba
c W a b

cde C cd
0 ζ P de

0 ζξ . (24)

Figure 8 pictorially represents the extension processes in

V
U

D

V

D

P’’1

P’1

c

a b

ξη

e c

a b

ξη

e
μ

a b

ξ

e
μ

a b

ξ

e

μ

Fig. 9. The SVD in Eq. (25) and the basis transformation applied to the left

side of P′′1 in Eq. (27).

Eqs. (23) and (24). The extended CTM around the bottom

right corner C′1
ab
c
η

can be obtained in the same manner, but

we do not have to explicitly calculate it, since the left-right
symmetry of the lattice allows us to use C′1 in Eq. (24) also
for the bottom right corner, after the appropriate substitution
of indices.

We have put dash marks on P′′1 and C′1 in order to indicate
that they have more tensor legs, respectively, compared with
P0 and C0. It is better to represent the pair of legs c and η, and
also the pair e and ξ by something like block spin variables.
For this purpose, we first divide the legs of P′′1 to the pair cη
and the rest, and then perform SVD

P′′1
ab
ce
ηξ
=
∑

µ

Uc
ηµ Dµ V

ab
e
µξ
, (25)

where Dµ denotes the singular values. We assume the decreas-
ing order for Dµ with respect to µ. The SVD we have per-
formed is pictorially shown in the upper part of Fig. 9.

The 3-leg tensor Uc
ηµ in Eq. (25) satisfies the orthogonality

∑

cη

Uc
ηµUc

ηµ′ = δµµ′ , (26)

which enables us to use it as the basis transformation. Let us
apply it on P′′1 in the manner

∑

cη

Uc
ηµ P′′1

ab
ce
ηξ
=
∑

cη

Uc
ηµ

∑

ν

Uc
ην Dν V

ab
e
νξ
= Dµ V

ab
e
µξ

(27)

from the left side, and express DµV
ab
e
µξ

by the new notation

P′1
ab
e
µξ

. We pictorially show the result of basis transformation in

the lower part of Fig. 9. The left-right symmetry in P′′1 allows
us to apply U to the right side of P′′1 and also to P′1. For the
latter, the transformation is performed as

∑

eξ

P′1
ab
e
µξ

Ue
ξρ = P ab

1 µρ (28)

to obtain the 4-leg tensor P ab
1 µρ. The transformation U can be

applied to C′1 in Eq. (24) from the right side, since the lattice
structure around the legs b, e, and ξ is in common, as shown
in Fig. 8. Performing the transformation

∑

eξ

C′1
ab
e
ξ

Ue
ξρ = C ab

1 ρ , (29)
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Thermodynamic properties of the ferromagnetic Ising model on the hierarchical pentagon lattice is studied by means

of the tensor network methods. The lattice consists of pentagons, where 3 or 4 of them meet at each vertex. Correlation

functions on the surface of the system up to n = 10 layers are evaluated by means of the time evolving block decimation

(TEBD) method, and the power low decay is observed in the high temperature region. The recursive structure of the

lattice enables complemental numerical study for larger systems, by means of a variant of the corner transfer matrix

renormalization group (CTMRG) method. Calculated spin expectation value shows that there is a mean-field type order-

disorder transition at T1 = 1.58 on the surface of the system. On the other hand, the bulk part exhibits the transition at

T2 = 2.269. Consistency of these calculated results is examined.

1. Introduction

The order-disorder phase transition has been one of the cen-
tral concern in modern statistical physics.1) The Ising model2)

has been extensively studied as a theoretical model of mag-
netic materials that consists of locally interacting molecular
magnetic moments.3) On the square lattice, presence of the
phase transition was proven by Peierls,4) and the exact for-
mula for the free energy in the thermodynamic limit was later
obtained by Onsager.5) The concept of the renormalization
group (RG) provides the unified picture on the singular be-
havior of thermodynamic functions around the phase transi-
tion point.6–8) The nature of the second-order phase transition
on the regular lattice that can be uniformly drawn on the flat

plane is well understood from the view point of the conformal
field theory.9)

The Ising model on the Cayley tree lattices has been known
as a reference model, where the partition function of the
whole system can be easily obtained by taking spin configura-
tion sum from the boundary sites.10) Although the correspond-
ing free energy is an analytic function of the temperature T ,
those bulk spins deep inside the system, which are around
the root of the tree, can posses finite spontaneous magnetic
moment below the transition temperature, under the presence
of infinitesimally weak external field.11–13) The transition is
mean-field like, as it is explained from the self-consistent
study on the Bethe lattice.10, 14)

Similarly, on the hyperbolic (5, 4) lattice, where four pen-
tagons meet at each vertex, presence of the mean-field like
phase transition in the bulk part of the system was confirmed
numerically for the ferromagnetic Ising model by means of
the corner transfer matrix renormalization group (CTMRG)
method15–19) adapted to the hyperbolic lattice structure.20, 21)

Since the (5, 4) lattice is a regular lattice on the negatively
curved surface, which has a finite curvature radius R as the
typical length scale, the bulk part of the system cannot be
critical, where there is scale invariance.22) Thus the correla-
tion length of the model (along the geodesics) is always fi-
nite, even at the bulk transition temperature.23) It is naturally
expected that ferromagnetic Ising models on the hyperbolic

*nishino@kobe-u.ac.jp
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Fig. 1. Structure of the hierarchical pentagon lattice in the case n = 4. We

regard σ0
0

and σ0
1

at the top as the bulk spins, and those σ4
j

from j = 0 to

j = m(4) = 16 at the bottom as the surface spins.

(p, q) lattices, where q numbers of p-gons meet at the lattice
point, share the mean-field nature.24)

Recently, Asaduzzaman et al performed the Monte Carlo
simulation for the Ising model on the hyperbolic (3, 7) lat-
tice.25) From the numerical study on finite size systems, they
confirmed presence of the power-law decay of the correla-
tion function on the boundary of the system at any temper-
ature. Okunishi and Takayanagi have rigorously shown the
power-law decay along the boundary of the trivalent Cayley
tree lattice,26) which is the hyperbolic (∞, 3) lattice, and rein-
terpreted the system from the view point of the Ads/CFT cor-
respondence.27–30) One of the theoretical interest on the hy-
perbolic (p, q) lattice is to confirm the presence, or absence,
of the order-disorder transition at the system boundary.

Motivated from these recent studies focused on the hyper-
bolic lattices, in this article we analyze the thermodynamic
properties of the ferromagnetic Ising model on the hierarchi-
cal pentagon lattice shown in Fig. 1. Typically the case when
there are n = 4 layers of horizontally aligned pentagons is
drawn. It should be noted that all the pentagons are repre-
sented by the rectangular shape, so that the hierarchical lat-
tice structure can be captured systematically. There are 2n − 1
pentagons in total. Three or four pentagons meet on each ver-
tex, and the number is exceptionally 2 at the system boundary.

1
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There is an Ising spin σi
j = ±1 shown by the open circle on

each vertex, where the index i specifies the row from the top
i = 0 to the bottom i = n, and where j specifies the horizontal
location from the left j = 0 to the right j = 2i . In order not
to use nested index in the following equations, we introduce
the notation m(i) = 2i , where m(i) + 1 is the number of sites
on the i-th row. The lattice has a geometrical analogy with
the Cayley tree, in the sense that we obtain the binary tree by
connecting the centers of vertically touching pentagons. Thus
the upper boundary of the lattice with i = 0 corresponds to
the root of the tree, and the lower boundary with i = n corre-
sponds to the leaves. Considering the analogy, we regard σ0

0

and σ0
1 at the top as the bulk spins, and σn

j for arbitrary j at
the bottom as the surface spins.

Pairwise Ising interaction is present between each neigh-
boring spins connected by the line. The Hamiltonian of the
system is given by

Hn

(

{σ}
)

= −J

n
∑

i=0

m(i)−1
∑

j=0

σi
jσ

i
j+1 − J

n−1
∑

i=0

m(i)
∑

j=0

σi
jσ

i+1
2 j , (1)

where J > 0 is the ferromagnetic coupling constant. In the
left hand side, all the spins contained in the system is shortly
denoted by {σ}. We assume that there is no external magnetic
field, unless otherwise noted. The thermodynamic properties
of the system can be obtained from the partition function

Zn(T ) =
∑

{σ}

exp

[

−
Hn

(

{σ}
)

kBT

]

, (2)

where T is the temperature, and where kB is the Boltzmann
constant. We set the temperature unit so that kB = 1 is satis-
fied. The sum of the Boltzmann weight of the whole system
is taken for all the possible spin configurations.

In this article, we perform numerical study on the system
by the time evolving block decimation (TEBD) method31, 32)

up to the case n = 10, and complementary by the modified
CTMRG method for larger systems. We show that the surface
spin expectation value at the center of the n-th row ⟨σn

m(n)/2⟩

is non-zero below T1 = 1.58, when n is sufficiently large.
On the other hand, the bulk spin expectation value ⟨σ0

0
⟩ =

⟨σ0
1⟩ becomes non-zero from higher temperature T2 = 2.269.

When T is larger than T1, the correlation function along the
surface row shows power-law decay.

The structure of this article is as follows. In Sec. II, we
shortly explain the way how to apply TEBD method, and
show the calculated entanglement entropy and the correlation
function. In Sec. III we explain the numerical algorithm of the
modified CTMRG method, which is complementary used for
thermodynamic analysis, and show the calculated numerical
results. Conclusions are summarized in the last section, and
the remaining problems are discussed.

2. Application of the TEBD Method

In this section we explain how to perform the thermody-
namic study on the Ising model on the hierarchical pentagon
lattice, by means of the TEBD method. Let us consider the
distribution function

Gn

(

σn
0, · · · ,σ

n
m(n)

)

=
∑

{σ0}

· · ·
∑

{σn−1}

exp

[

−
Hn

(

{σ}
)

kBT

]

, (3)

G2

G1

G1
G2

G3

U1

U 2

U0

G0

Fig. 2. Pictorial representation of the transfer matrix multiplications in

Eq. (5) from i = 0 to i = 2.

which represents the relative probability of appearance of the
spin configuration σn

0, · · · ,σ
n
m(n) at the bottom boundary. The

configuration sum is taken for those row spins σi
0, · · · ,σ

i
m(i),

which are shortly denoted by {σi }, from i = 0 to i = n − 1.
The left hand side can be written in the short form Gn

(

{σn}
)

.
Introducing the transfer matrix

Ui

(

{σi+1} | {σi }
)

= Ui

(

σi+1
0 , · · ·σ

i+1
m(i+1) |σ

i
0, · · · ,σ

i
m(i)

)

= exp

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

J

kBT

m(i+1)−1
∑

j=0

σi+1
j σ

i+1
j+1 +

J

kBT

m(i)
∑

j=0

σi
jσ

i+1
2 j

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (4)

we can obtain the distribution function in Eq. (3) by way of
the successive multiplication of the transfer matrix

Gi+1

(

{σi+1}
)

=
∑

{σi }

Ui

(

{σi+1} | {σi }
)

Gi

(

{σi }
)

, (5)

starting from the initial distribution

G0

(

σ0
0,σ

0
1

)

= exp

[

J

kBT
σ0

0 σ
0
1

]

(6)

at the top of the system. Figure 2 shows the pictorial repre-
sentation of the transfer matrix multiplication in Eq. (5) from
n = 0 to n = 2. Configuration sums are taken for the spins
shown by the black dots. Since Gn

(

{σn}
)

is the function of
m(n)+ 1 = 2n + 1 number of the surface spins {σn}, direct nu-
merical calculation can be performed only up to several lay-
ers, around n = 5 or n = 6.

If we regard Gn

(

{σn}
)

as the quantum amplitude, the cor-
responding quantum state is expected to be weakly entan-
gled, since the lattice can be horizontally separated by cut-
ting only n + 1 horizontal bonds along the vertical cut, sim-
ilar to the multi-scale entanglement renormalization Ansatz
(MERA) network.33, 34) Thus Gn

(

{σn}
)

could be precisely rep-
resented by means of the matrix product state (MPS).35, 36)

Since the transfer matrix in Eq. (4) consists of horizontal
product of local factors, the transfer matrix multiplication in
Eq. (5) can be efficiently performed step by step by means of
the TEBD method.31, 32)

We explain some details in the numerical transfer matrix
multiplication, when the distribution function is represented
in the form of MPS. Those readers who are not interested in

2

Bulk

Surface

observe the
spontaneous
magnetization
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Fig. 14. Spontaneous magnetization ⟨σn
m(n)/2

⟩ on the surface, when n is

sufficiently large. The square ⟨σn
m(n)/2⟩

2 is shown in the inset.

3.1 Calculated Results by the Modified CTMRG Method

We perform the numerical calculation on the hierarchical
pentagon lattice by means of the modified CTMRG method,
keeping χ = 55 degrees of freedom at most when we perform
the RG transformation. The expectation value ⟨σn

m(n)/2⟩ is con-
verged with respect to n less than n = 100 at any temperature.
In case of ⟨σ0

0⟩, the convergence becomes slow near the tran-
sition temperature, and therefore we performed the iterative
calculation up to n = 30000 at most. For all the data we show
in this section, we checked the convergence with respect to χ
and n.

Figure 13 shows the temperature dependence of the sponta-
neous magnetization ⟨σ0

0⟩ at the top, which are regarded as the
bulk part of the system. Around T = 1, the plotted value de-
creases with T , as if it vanishes some where between T = 1.5
and T = 2.0. But the decreasing rate becomes almost constant
around T = 1.5, and finally the value vanishes at the transition
temperature T2 = 2.269. As shown in the inset, ⟨σ0

0⟩
2 shows

linear behavior near T = T2. The behavior suggests that the
transition is mean-field like, as it was observed in the bulk
part of the hyperbolic lattices.20–24)

Figure 14 shows the temperature dependence of ⟨σn
m(n)/2⟩

at the center of the bottom spin row, which are regarded as
the surface of the system. As shown in the inset, the squared
value ⟨σn

m(n)/2⟩
2 shows linear behavior around the transition

temperature T1 = 1.58. The dotted lines show the linear fitting
result, and the corresponding dotted curve is also drawn for
⟨σn

m(n)/2⟩. The transition is again mean-field like. The curious

behavior of ⟨σ0
0⟩ in Fig. 13 might be related to presence of the
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Fig. 15. Decay of ⟨σn
m(n)/2⟩F with respect to n.
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Fig. 16. Decay rate b(T ) in Eq. (33) with respect to T . The dotted line

connects the plots at T = 1.6 and T = 1.7.

symmetry breaking on the surface at T1.
For the purpose of examining the value of T1 by alternative

view point, we observe the decay of spin correlation along the
vertical direction. Let us impose the ferromagnetic boundary
condition σ0

0 = σ
0
1 = 1 at the top of the system, when we

calculate the environment tensor Ea b c
de f ghi

shown in Fig. 12. We
denote the corresponding expectation value as ⟨σn

m(n)/2⟩F. Be-
low T1, we obtain the same value ⟨σn

m(n)/2
⟩ = ⟨σn

m(n)/2
⟩F as

the spontaneous magnetization, when n is sufficiently large.
Above T1, ⟨σn

m(n)/2⟩F show exponential dumping with respect
to n, as shown in Fig. 15. The dotted lines denote the linear
fitting result in the region where the exponential dumping

⟨σn
m(n)/2⟩F ∝ e−b(T )n (33)

is observed clearly, where b(T ) is the decay rate. Only in the
case T = 1.6, several plots visibly deviate from the dotted line
in the small n region. Figure 16 shows the temperature depen-
dence of b(T ). No singular behavior is observed at the bulk
transition temperature T2 = 2.269, and b(T ) almost linearly
decreases to zero at T1 = 1.58. The result may suggest that
the spin correlation length in the vertical direction diverges at
T1 with the critical index ν = 1, which is different from the
mean-field value ν = 1/2. It should be noted, however, that
the lattice is not uniform in the vertical direction, and there-
fore the definition of the effective distance in vertical direction
is not straightforward, when we consider continuum limit at
T1.

In the intermediate temperature region T1 < T < T2, the
bulk spin has finite spontaneous magnetization as shown in

7

(a) Bulk

(b) Surface

Bulk-Surface

decay rate

2.269
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Ferromagnetic Ising model on the hierarchical pentagon lattice
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Thermodynamic properties of the ferromagnetic Ising model on the hierarchical pentagon lattice is studied by means

of the tensor network methods. The lattice consists of pentagons, where 3 or 4 of them meet at each vertex. Correlation

functions on the surface of the system up to n = 10 layers are evaluated by means of the time evolving block decimation

(TEBD) method, and the power low decay is observed in the high temperature region. The recursive structure of the

lattice enables complemental numerical study for larger systems, by means of a variant of the corner transfer matrix

renormalization group (CTMRG) method. Calculated spin expectation value shows that there is a mean-field type order-

disorder transition at T1 = 1.58 on the surface of the system. On the other hand, the bulk part exhibits the transition at

T2 = 2.269. Consistency of these calculated results is examined.

1. Introduction

The order-disorder phase transition has been one of the cen-
tral concern in modern statistical physics.1) The Ising model2)

has been extensively studied as a theoretical model of mag-
netic materials that consists of locally interacting molecular
magnetic moments.3) On the square lattice, presence of the
phase transition was proven by Peierls,4) and the exact for-
mula for the free energy in the thermodynamic limit was later
obtained by Onsager.5) The concept of the renormalization
group (RG) provides the unified picture on the singular be-
havior of thermodynamic functions around the phase transi-
tion point.6–8) The nature of the second-order phase transition
on the regular lattice that can be uniformly drawn on the flat

plane is well understood from the view point of the conformal
field theory.9)

The Ising model on the Cayley tree lattices has been known
as a reference model, where the partition function of the
whole system can be easily obtained by taking spin configura-
tion sum from the boundary sites.10) Although the correspond-
ing free energy is an analytic function of the temperature T ,
those bulk spins deep inside the system, which are around
the root of the tree, can posses finite spontaneous magnetic
moment below the transition temperature, under the presence
of infinitesimally weak external field.11–13) The transition is
mean-field like, as it is explained from the self-consistent
study on the Bethe lattice.10, 14)

Similarly, on the hyperbolic (5, 4) lattice, where four pen-
tagons meet at each vertex, presence of the mean-field like
phase transition in the bulk part of the system was confirmed
numerically for the ferromagnetic Ising model by means of
the corner transfer matrix renormalization group (CTMRG)
method15–19) adapted to the hyperbolic lattice structure.20, 21)

Since the (5, 4) lattice is a regular lattice on the negatively
curved surface, which has a finite curvature radius R as the
typical length scale, the bulk part of the system cannot be
critical, where there is scale invariance.22) Thus the correla-
tion length of the model (along the geodesics) is always fi-
nite, even at the bulk transition temperature.23) It is naturally
expected that ferromagnetic Ising models on the hyperbolic

*nishino@kobe-u.ac.jp
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Fig. 1. Structure of the hierarchical pentagon lattice in the case n = 4. We

regard σ0
0

and σ0
1

at the top as the bulk spins, and those σ4
j

from j = 0 to

j = m(4) = 16 at the bottom as the surface spins.

(p, q) lattices, where q numbers of p-gons meet at the lattice
point, share the mean-field nature.24)

Recently, Asaduzzaman et al performed the Monte Carlo
simulation for the Ising model on the hyperbolic (3, 7) lat-
tice.25) From the numerical study on finite size systems, they
confirmed presence of the power-law decay of the correla-
tion function on the boundary of the system at any temper-
ature. Okunishi and Takayanagi have rigorously shown the
power-law decay along the boundary of the trivalent Cayley
tree lattice,26) which is the hyperbolic (∞, 3) lattice, and rein-
terpreted the system from the view point of the Ads/CFT cor-
respondence.27–30) One of the theoretical interest on the hy-
perbolic (p, q) lattice is to confirm the presence, or absence,
of the order-disorder transition at the system boundary.

Motivated from these recent studies focused on the hyper-
bolic lattices, in this article we analyze the thermodynamic
properties of the ferromagnetic Ising model on the hierarchi-
cal pentagon lattice shown in Fig. 1. Typically the case when
there are n = 4 layers of horizontally aligned pentagons is
drawn. It should be noted that all the pentagons are repre-
sented by the rectangular shape, so that the hierarchical lat-
tice structure can be captured systematically. There are 2n − 1
pentagons in total. Three or four pentagons meet on each ver-
tex, and the number is exceptionally 2 at the system boundary.

1
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There is an Ising spin σi
j = ±1 shown by the open circle on

each vertex, where the index i specifies the row from the top
i = 0 to the bottom i = n, and where j specifies the horizontal
location from the left j = 0 to the right j = 2i . In order not
to use nested index in the following equations, we introduce
the notation m(i) = 2i , where m(i) + 1 is the number of sites
on the i-th row. The lattice has a geometrical analogy with
the Cayley tree, in the sense that we obtain the binary tree by
connecting the centers of vertically touching pentagons. Thus
the upper boundary of the lattice with i = 0 corresponds to
the root of the tree, and the lower boundary with i = n corre-
sponds to the leaves. Considering the analogy, we regard σ0

0

and σ0
1 at the top as the bulk spins, and σn

j for arbitrary j at
the bottom as the surface spins.

Pairwise Ising interaction is present between each neigh-
boring spins connected by the line. The Hamiltonian of the
system is given by

Hn

(

{σ}
)

= −J

n
∑

i=0

m(i)−1
∑

j=0

σi
jσ

i
j+1 − J

n−1
∑

i=0

m(i)
∑

j=0

σi
jσ

i+1
2 j , (1)

where J > 0 is the ferromagnetic coupling constant. In the
left hand side, all the spins contained in the system is shortly
denoted by {σ}. We assume that there is no external magnetic
field, unless otherwise noted. The thermodynamic properties
of the system can be obtained from the partition function

Zn(T ) =
∑

{σ}

exp

[

−
Hn

(

{σ}
)

kBT

]

, (2)

where T is the temperature, and where kB is the Boltzmann
constant. We set the temperature unit so that kB = 1 is satis-
fied. The sum of the Boltzmann weight of the whole system
is taken for all the possible spin configurations.

In this article, we perform numerical study on the system
by the time evolving block decimation (TEBD) method31, 32)

up to the case n = 10, and complementary by the modified
CTMRG method for larger systems. We show that the surface
spin expectation value at the center of the n-th row ⟨σn

m(n)/2⟩

is non-zero below T1 = 1.58, when n is sufficiently large.
On the other hand, the bulk spin expectation value ⟨σ0

0
⟩ =

⟨σ0
1⟩ becomes non-zero from higher temperature T2 = 2.269.

When T is larger than T1, the correlation function along the
surface row shows power-law decay.

The structure of this article is as follows. In Sec. II, we
shortly explain the way how to apply TEBD method, and
show the calculated entanglement entropy and the correlation
function. In Sec. III we explain the numerical algorithm of the
modified CTMRG method, which is complementary used for
thermodynamic analysis, and show the calculated numerical
results. Conclusions are summarized in the last section, and
the remaining problems are discussed.

2. Application of the TEBD Method

In this section we explain how to perform the thermody-
namic study on the Ising model on the hierarchical pentagon
lattice, by means of the TEBD method. Let us consider the
distribution function

Gn

(

σn
0, · · · ,σ

n
m(n)

)

=
∑

{σ0}

· · ·
∑

{σn−1}

exp

[

−
Hn

(

{σ}
)

kBT

]

, (3)

G2

G1

G1
G2

G3

U1

U 2

U0

G0

Fig. 2. Pictorial representation of the transfer matrix multiplications in

Eq. (5) from i = 0 to i = 2.

which represents the relative probability of appearance of the
spin configuration σn

0, · · · ,σ
n
m(n) at the bottom boundary. The

configuration sum is taken for those row spins σi
0, · · · ,σ

i
m(i),

which are shortly denoted by {σi }, from i = 0 to i = n − 1.
The left hand side can be written in the short form Gn

(

{σn}
)

.
Introducing the transfer matrix

Ui

(

{σi+1} | {σi }
)

= Ui

(

σi+1
0 , · · ·σ

i+1
m(i+1) |σ

i
0, · · · ,σ

i
m(i)

)

= exp

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

J

kBT

m(i+1)−1
∑

j=0

σi+1
j σ

i+1
j+1 +

J

kBT

m(i)
∑

j=0

σi
jσ

i+1
2 j

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (4)

we can obtain the distribution function in Eq. (3) by way of
the successive multiplication of the transfer matrix

Gi+1

(

{σi+1}
)

=
∑

{σi }

Ui

(

{σi+1} | {σi }
)

Gi

(

{σi }
)

, (5)

starting from the initial distribution

G0

(

σ0
0,σ

0
1

)

= exp

[

J

kBT
σ0

0 σ
0
1

]

(6)

at the top of the system. Figure 2 shows the pictorial repre-
sentation of the transfer matrix multiplication in Eq. (5) from
n = 0 to n = 2. Configuration sums are taken for the spins
shown by the black dots. Since Gn

(

{σn}
)

is the function of
m(n)+ 1 = 2n + 1 number of the surface spins {σn}, direct nu-
merical calculation can be performed only up to several lay-
ers, around n = 5 or n = 6.

If we regard Gn

(

{σn}
)

as the quantum amplitude, the cor-
responding quantum state is expected to be weakly entan-
gled, since the lattice can be horizontally separated by cut-
ting only n + 1 horizontal bonds along the vertical cut, sim-
ilar to the multi-scale entanglement renormalization Ansatz
(MERA) network.33, 34) Thus Gn

(

{σn}
)

could be precisely rep-
resented by means of the matrix product state (MPS).35, 36)

Since the transfer matrix in Eq. (4) consists of horizontal
product of local factors, the transfer matrix multiplication in
Eq. (5) can be efficiently performed step by step by means of
the TEBD method.31, 32)

We explain some details in the numerical transfer matrix
multiplication, when the distribution function is represented
in the form of MPS. Those readers who are not interested in

2
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n
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Fig. 13, and the surface magnetization is absent as shown in
Fig. 14. In order to capture the magnetization profile between
these two parts, we calculate the expectation values of the ver-
tically aligned spins ⟨σi

m(i)/2
⟩ from i = 1 to i = 150 in the case

where the system contains n = 150 layers. In order to observe
the symmetry breaking in a controlled manner, we impose a
weak magnetic field h to the surface spins {σn}. The initial
HCTM is then modified as

P ab
0 ce =

∑

d

W a b
cde Bcd Bde exp

[

K

2
(c + 2d + e)

]

, (34)

where the parameter K = µBh/kBT represents the effect of the
magnetic interaction with the Bohr moment µB. Similarly, the
initial CTM is modified as

C ab
0 e =

∑

cd

Ba
c W a b

cde Bcd Bde exp
[

K

2
(2c + 2d + e)

]

. (35)

We perform the calculation for the cases where K =

10−4, 10−6, 10−8, 10−10, and 0. Figure 17 shows the calculated
⟨σi

m(i)/2⟩ from i = 5 to i = 150 when T = 1.8. Exponential
dumping with respect to i is clearly observed near the surface,
and the dumping rate is consistent with b(T = 1.8) obtained
from the plots at T = 1.8 in Fig. 15. In the case K = 0, the
surface magnetization ⟨σ150

m(150)/2
⟩ is artificially induced by a

tiny numerical error. The magnetic profiles plotted in Fig. 17
shows that there is a polarized area in the bulk part. The situ-
ation is common to the Ising model on the Cayley tree below
the bulk symmetry breaking temperature.

2.0

0.5

3.01.5 2.5

1.0

2.0

1.5

0.0

2.5

c(
 T

 )

0.4

0.2

1.6 1.7

c
1
.6

0.0

Fig. 19. Temperature dependence of the exponent c(T ) in Eq. (36). We

show [c(T )]1.6 neat T = T1 in the inset.

Finally, let us examine how strongly σn
0 and σn

m(n) are cor-
related, observing the expectation value ⟨σn

0σ
n
m(n)⟩ for the zero

field case K = 0. Figure 18 shows the calculated result from
T = 1.6 to T = 2.2 by the step ∆T = 0.1, with respect to n.
The exponential dumping

⟨σn
0σ

n
m(n)⟩ ∝ e−c(T )n (36)

is clearly observed, where c(T ) is the dumping constant. It
should be noted that the distance ℓ betweenσn

0 andσn
m(n) mea-

sured along the surface is m(n) = 2n. From the relation

ℓ−η =
(

2n)−η ∝ e−c(T )n , (37)

the exponent for the power-law decay along the surface is es-
timated as

η =
c(T )

ln 2
. (38)

Figure 19 shows the temperature dependence of c(T ). Consid-
ering the fact that the shortest path from σn

0 to σn
m(n) is 2n+ 1,

it is expected that c(T ) in Eq. (36) is nearly twice as large as
b(T ) in Eq. (33). Comparing Fig. 16 and Fig. 19, one finds
that the relation c(3.0) ∼ 2b(3.0) is satisfied, where the corre-
lation length to the vertical direction is short at this tempera-
ture. From the value of c(T ) at T = 2.4, 2.6, 2.8, and 3.0, we
calculate η by Eq. (38), and draw the corresponding lines in
Fig. 5. Qualitative agreement is observed about the decay rate
estimated from the TEBD method and that from the modified
CTMRG method. Near T = T1, where the vertical correla-
tion length is long, the relation c(T ) ∼ 2b(T ) does not hold
any more. The values [c(T )]1.6 neat T = T1 shown in the in-
set are nearly proportional to T − T1. If we draw the line that

passes the plots [c(1.6)]1.6 and [c(1.7)]1.6 in the inset, we ob-
tain T1 = 1.56, where the last digit changes if we use [c(T )]1.5

or [c(T )]1.7, and thus we conjecture that T1 = 1.58 estimated
from Fig. 16 is more accurate.

4. Conclusions and Discussions

We numerically observed the phase transition of the Ising
model on the hierarchical pentagon lattice, by means of the
tensor network methods. By means of the TEBD method up
to the number of layers n = 10, the distribution function Gn

on the surface is calculated. The corresponding entanglement
entropy S (T ) with respect to the bipartition of the surface spin
row shows peak structure, whose hight increases with n. In the
high temperature region T ≥ 2.4, the power-law decay of the
correlation function along the surface is observed. By means

8
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Thermodynamic properties of the ferromagnetic Ising model on the hierarchical pentagon lattice is studied by means

of the tensor network methods. The lattice consists of pentagons, where 3 or 4 of them meet at each vertex. Correlation

functions on the surface of the system up to n = 10 layers are evaluated by means of the time evolving block decimation

(TEBD) method, and the power low decay is observed in the high temperature region. The recursive structure of the

lattice enables complemental numerical study for larger systems, by means of a variant of the corner transfer matrix

renormalization group (CTMRG) method. Calculated spin expectation value shows that there is a mean-field type order-

disorder transition at T1 = 1.58 on the surface of the system. On the other hand, the bulk part exhibits the transition at

T2 = 2.269. Consistency of these calculated results is examined.

1. Introduction

The order-disorder phase transition has been one of the cen-
tral concern in modern statistical physics.1) The Ising model2)

has been extensively studied as a theoretical model of mag-
netic materials that consists of locally interacting molecular
magnetic moments.3) On the square lattice, presence of the
phase transition was proven by Peierls,4) and the exact for-
mula for the free energy in the thermodynamic limit was later
obtained by Onsager.5) The concept of the renormalization
group (RG) provides the unified picture on the singular be-
havior of thermodynamic functions around the phase transi-
tion point.6–8) The nature of the second-order phase transition
on the regular lattice that can be uniformly drawn on the flat

plane is well understood from the view point of the conformal
field theory.9)

The Ising model on the Cayley tree lattices has been known
as a reference model, where the partition function of the
whole system can be easily obtained by taking spin configura-
tion sum from the boundary sites.10) Although the correspond-
ing free energy is an analytic function of the temperature T ,
those bulk spins deep inside the system, which are around
the root of the tree, can posses finite spontaneous magnetic
moment below the transition temperature, under the presence
of infinitesimally weak external field.11–13) The transition is
mean-field like, as it is explained from the self-consistent
study on the Bethe lattice.10, 14)

Similarly, on the hyperbolic (5, 4) lattice, where four pen-
tagons meet at each vertex, presence of the mean-field like
phase transition in the bulk part of the system was confirmed
numerically for the ferromagnetic Ising model by means of
the corner transfer matrix renormalization group (CTMRG)
method15–19) adapted to the hyperbolic lattice structure.20, 21)

Since the (5, 4) lattice is a regular lattice on the negatively
curved surface, which has a finite curvature radius R as the
typical length scale, the bulk part of the system cannot be
critical, where there is scale invariance.22) Thus the correla-
tion length of the model (along the geodesics) is always fi-
nite, even at the bulk transition temperature.23) It is naturally
expected that ferromagnetic Ising models on the hyperbolic
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Fig. 1. Structure of the hierarchical pentagon lattice in the case n = 4. We

regard σ0
0

and σ0
1

at the top as the bulk spins, and those σ4
j

from j = 0 to

j = m(4) = 16 at the bottom as the surface spins.

(p, q) lattices, where q numbers of p-gons meet at the lattice
point, share the mean-field nature.24)

Recently, Asaduzzaman et al performed the Monte Carlo
simulation for the Ising model on the hyperbolic (3, 7) lat-
tice.25) From the numerical study on finite size systems, they
confirmed presence of the power-law decay of the correla-
tion function on the boundary of the system at any temper-
ature. Okunishi and Takayanagi have rigorously shown the
power-law decay along the boundary of the trivalent Cayley
tree lattice,26) which is the hyperbolic (∞, 3) lattice, and rein-
terpreted the system from the view point of the Ads/CFT cor-
respondence.27–30) One of the theoretical interest on the hy-
perbolic (p, q) lattice is to confirm the presence, or absence,
of the order-disorder transition at the system boundary.

Motivated from these recent studies focused on the hyper-
bolic lattices, in this article we analyze the thermodynamic
properties of the ferromagnetic Ising model on the hierarchi-
cal pentagon lattice shown in Fig. 1. Typically the case when
there are n = 4 layers of horizontally aligned pentagons is
drawn. It should be noted that all the pentagons are repre-
sented by the rectangular shape, so that the hierarchical lat-
tice structure can be captured systematically. There are 2n − 1
pentagons in total. Three or four pentagons meet on each ver-
tex, and the number is exceptionally 2 at the system boundary.
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Discussions
・How to consider the continuum limit?
・Variants of the lattice on Hyperbolic Surface?
・Can be defined in any dimension?
・effect of randomness …

application to the Stacked Pentagon lattice
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