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Complexity



Misconception: QC can solve all problems 
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• It turns out that for majority of problems, quantum computers would do no better than classical 
computers. A major research direction is to understand which problems can be solved efficiently by 
QCs.  

• For example, we know that scattering in  can be solved efficiently by quantum computers arXiv: 
1703.00454  

• Class of problems which are best suited for quantum advantage belong to complexity class BQP. 
For ex: Shor’s algorithm. Also Grover’s algorithm but not as nice as Shor’s (only polynomial speed-
up). 
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Outline of the talk

• Effectiveness of tensor networks - MPS approximation and towards universal quantum 

• Sachdev-Ye-Kitaev (SYK) model of holography  

• Quantum gates and real-time evolution using quantum circuits 

• SYK model with N = 6, 8  Majorana fermions on IBM quantum computers with error mitigation - 
real-time dynamics and thermal state preparation 

• Summary and future directions
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Tensor networks 

• The most efficient classical method of studying the properties of lower-dimensional systems is tensor 
networks. The idea is based on the fact that if the Hamiltonian is sufficiently local and gapped, then 
the relevant sector of the entire Hilbert space is a tiny region which satisfies area-law entanglement 
i.e., they are less entangled.  

• In this case, the vector space of dimension dN can be described by O(d ) where  is the bond 
dimension of the MPS. This prescription fails for gapless systems and has to be replaced by more 
complicated network such as MERA.

χ2 χ
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Classical to Quantum

• An important ingredient of numerical lattice formalism is Wick rotation. Can’t use sampling methods 
otherwise.  

• Tensor networks can help sometimes but they have their own limitations. We need new tools to 
understand real-time dynamics of interacting field theories or quantum many-body systems.  

• We require fundamentally new idea of computing [Manin, Benioff, Feynman et al., circa 1978] such 
that we can compute exp(-iHt) for a given H in terms of circuits exploiting features of QM more 
efficiently than classical computers.  
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Approaches to universal quantum computing 

• Qubit approach — Manipulate and utilize the two-state quantum system. More than dozen approaches. Two 
most popular — Superconducting and Trapped Ion.  

• Qumodes approach — Use photons (quantum harmonic oscillator), infinite-dimensional HS. Not as popular as 
qubit approach. Error correction not that well-developed.  

• This talk will discuss the qubit approach, however, other approach might be better suited for bosonic d.o.f as 
explored for NLSM model (see 2310.12512). Now extending the “CV” approach to SU(2) gauge theory [Kogut-
Susskind Hamiltonian] 
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Qubits vs. Qumodes 
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Quick Recap - Unitary gates 
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Questions?



SYK model 
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• Model of  Majorana fermions with -interaction terms with random coupling taken from a Gaussian distribution with 

.  

• The fermions  satisfy, . We will set . Note that it has units of energy and inverse time.  

• In the limit of large number of fermions with , the model has several interesting features such as 
maximal Lyapunov exponent. 

N q

J⋯ = 0, J2
⋯ =

q!J2

Nq−1

χ χi χj + χj χi = δij J = 1

N ≫ βJ ≫ 1

H =
(i)q/2

q!

N

∑
i,j,k,⋯,q=1

Jijk⋯q χi χj χk⋯χq,

3 out of 70 terms for N=8



Mapping fermions to qubits 
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• N Majorana fermions requires N/2 qubits. We use the standard Jordan-Wigner mapping to write  in 
terms of Pauli matrices X, Y, Z, and Identity.  

• The SYK Hamiltonian is then written as sum of Pauli strings. The number of strings is  and 

grows like .  Simplest non-trivial case for is  with one term. We restrict to . 

χ

(N
q )

∼ Nq N = q q = 4

χ2k−1 =
1

2 (
k−1

∏
j=1

Zj)Xk𝕀⊗(N−2k)/2 , χ2k =
1

2 (
k−1

∏
j=1

Zj)Yk𝕀⊗(N−2k)/2



Simplest case: N=4
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• The goal of quantum computation is to construct a unitary operator corresponding to this 
Hamiltonian. So, for this case we have .  

• This circuit is simple to construct and just needs 2 CNOTs and 1 rotation gate.

exp(−iHt) = exp(iJ1234ZZt)

H = J1234 χ1χ2 χ3χ4

χ1 = X𝕀, χ2 = Y𝕀, χ3 = ZX, χ4 = ZY

H = J1234(X𝕀) ⋅ (Y𝕀) ⋅ (ZX) ⋅ (ZY) = − J1234ZZ
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Circuit complexity
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• Different approaches can be used to do the Hamiltonian simulation (aka time evolution). A popular method is 
Trotter method. It is based on Lie-Suzuki-Trotter product formula* (writing ,  )  
 

                                      


• Depending on what error ( ) we desire in the time-evolution from the second term, we can compute the number 
of slices ( ) we need to take. So, the complexity reduces to finding number of 2q-gates for each Trotter step. 
Recall that  needed just 2 2q-gates for each Trotter step.  
 
 

H = ∑m
j=1 Hj m ∼ N4

e−iHt = (
m

∏
j=1

e−iHjt/r)r + 𝒪(∑
j<k

[Hj, Hk]
t2

r ),

ϵ
r
N = 4

Definition: How many 2q-gates do we need to simulate the SYK model?

*  Corollary of Zassenhaus formula i.e., exp(t(X+Y)) = exp(tX) exp(tY) + O(t^2) (also known as dual of BCH formula). 



Old work(s)

15

• The last one clearly is the most efficient, however, in the noisy-era implementing this is not 
feasible. It requires fault-tolerant quantum resources + ancillas since it is based on the 
basic idea of embedding  in a bigger vector space.  

• Using the Trotter methods, the best seems to be . In our paper, we improved the 
complexity to  which we now discuss.

H

∼ N8

𝒞 = 𝒪(N5t2/ϵ)

𝒞 = 𝒪(N10t2/ϵ) L. García-Álvarez et al., PRL 119, 040501 (2017)

𝒞 = 𝒪(N8t2/ϵ) Susskind, Swingle et al., arXiv: 2008.02303 (2020)

𝒞 = �̃�(N7/2t) Babbush et al., Phys. Rev. A 99, 040301 (2019)



Commuting terms
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The costs can be simplified if we are little careful in splitting the SYK Hamiltonian.  

The number of terms grows like , however, a large fraction of them commute with 
one another and can be collected together and then time-evolved more efficiently. We 
can find diagonalising circuit for each cluster and then apply time-evolution operator.  


Finding optimal number of such clusters is a well-studied computer science problem. 
This is in general a NP-hard problem but various approx. algorithms exits. 

∼ N4



Estimate based on general commutivity  
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• A simple observable we can compute is the probability that we return to the same initial state after some 
evolution time  i.e.,  For initial state, we take .                                      

• For approximating the unitary, we use the first-order product formula and construct the corresponding 
quantum circuit.  

• For , we have a simple circuit of only two 2Q gates, so the entire circuit for return prob. is 
straightforward. For , there are 30 2Q gates per step which we cannot show here. 

t 𝒫0 = |⟨ψ0 |e−iHt |ψ0⟩ |2 . |0⟩⊗N/2

N = 4
N = 6

Return probability
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• We used the quantum computers available through IBM to simulate the SYK model. The topology of the 
processor is shown below. In practice, we need more gates than necessary. For example, we show a 
combination of qubits we used for . This chip topology is ‘heavy-hex’. N = 8

IBM chip topology
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Return probability - IBM Results
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Error Mitigation

• The results from the 127-qubit device (red) agrees slightly less than those with self-mitigation (green). 
The red points have been read from some fixed number of measurements/shots and post-
processed with mild mitigation including M3 to correct read-out errors and DD to increase 
coherence time of qubits.  

• To get closer to the exact results, we found that an idea similar to CNOT only mitigation (known as 
self-mitigation) seems to help drastically. Basic idea introduced in Urbanek et al. arXiv: 2103.08591 
and extended in Rahman et al. arXiv:2205.09247 

M3 is a matrix measurement mitigation (MMM or M3) technique that solves for corrected measurement probabilities using a dimensionality reduction step 

DD (dynamical decoupling) — a series of strong fast pulses are applied on the system which on average increases the lifetime of qubits and delays 
decoherence (or effect of interactions with environment)  
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• SYK model famously saturated the Lyapunov exponent i.e.,  for  when  is large.  

• One considers  and the expansion of the commutator gives 
OTOC :=  which characterizes quantum chaos.  

• Suppose one starts at , and computes also the two-pt correlator given by , the time 
scales at which the lower order correlators decay is called ‘dissipation time’. After this time, the OTOC 
grows as  and saturates beyond  known as scrambling time. Black holes are fastest scramblers!   

• These correlators have been computed up to  numerically i.e.,  has ~million terms and matrix has 
size ~billion. Hard for classical computers. 

λ = 2πT J/T ≫ 1 N

C(t) = − ⟨[W(t), V(0)] [W(t), V(0)]⟩
⟨W(t)V(0)W(t)V(0)⟩β = Tr(ρW(t)V(0)W(t)V(0))

t = 0 ⟨W(t)W(0)⟩

exp(λt) t⋆

N = 60 H

SYK model - Bound on chaos 
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• So the goal is to compute  on a quantum computer. Thermal correlators are currently not 
easy to compute due to limited resources. One simplification we can make is consider the  limit of OTOC. 
This is not at all interesting for holography, but this is where we must start. Hence, the density matrix is just .                 

• The unusual time-ordering of OTOC is also hard for quantum computers which often mean carrying out forward 
and backward evolution. We use a protocol (next slide) which uses only forward evolution to compute OTOC on 
quantum hardware.  
 
 

⟨W(t)V(0)W(t)V(0)⟩β
β → 0

ρ ∝ 𝕀

Out-of-time correlators (OTOC)
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• There are various protocols to measure OTOC on quantum computers, see Swingle 2202.07060 for review.  

• We use the one proposed in 1807.09087 now known as ‘randomised protocol’ since it computes OTOC 
through statistical correlations of observables measured on random states generated from a given matrix 
ensemble (CUE). 

• Infinite-temp OTOC is given by    where the average is over different 
random states  prepared by acting with random unitary on arbitrary state say . Note that this 
protocol works when  is traceless operator.  
 
 

Tr(W(t)V†W(t)V) ∝ ⟨W(t)⟩u⟨V†W(t)V⟩u
|ψu⟩ |0⟩⊗n

W

Randomised Protocol
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• We need two measurements (between which we compute the statistical correlation) and it is shown 
below. This is the global version of the protocol (since  has support over all qubits). There is also a 
local version of the protocol. Note that cost of decomposing arbitrary  increases exponentially, one 
can instead use unitary from a subset of Haar measure. They are called unitary -designs* in literature.  
 
                                      
 

u
u

t

Randomised Protocol
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• We used ibm_cusco and ibm_nazca to obtain the results show for . We took simplest operators where 
both  and  were taken to be single Pauli.  We see good agreement without need to do self-mitigation like we 
did for return probability.  
                                     


 
 
 

N = 6
W V

OTOC Results
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• We considered OTOC measured over random states (maximally mixed) generated i.e., . 
However, much of interesting Physics of the SYK happens in the region  and classical computations 
have argued that you need  to extract Lyapunov exponents close to the chaos bound.     

• Finite-temperature OTOCs are difficult for quantum computers in general. No simple/general cost-effective 
protocol exists. To move towards this goal, we are studying the preparation of Gibbs (thermal) states on 
quantum computer for the SYK model.  

• In addition to the thermal state (mixed) of the SYK model, one can also consider a purification of this known as 
thermo-field double state (TFD). TFD state is a pure state (up to unitary trans.) of some other system (for ex: 
coupled SYK model) and when we perform partial trace over either system, we recover thermal state on the 
other one.           
 

β = 1/T = 0
β ≫ 1

β ∼ 70

Finite-temperature SYK model
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• Before we move to preparation of Gibbs state, let’s us look at popular algorithm for preparing (approximate) 
ground states on QC.  

• Hybrid classical/quantum algorithm to find the ground state problem of a given Hamiltonian by finding the 
parameters of a quantum circuit ansatz that minimizes the Hamiltonian expectation value.  

• It primarily consists of three steps: 1) Prepare initial ansatz on QC i.e., , 2) Measure energy on QC and 
optimise the parameters  using classical optimisers and 3) Repeat until desired convergence is achieved.  
 

|ψ( ⃗Θ)⟩
Θ

VQE algorithm
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• Finite-temperature VQE methods are still an active area of research. Many proposals exist. The 
cost function is no longer  but rather  (free energy) which can be hard to compute on QC.  E E − TS

VQE for finite temperatures
q0

q1

q2

q3

Rz(◊1) Ry(◊2) Rz(◊3)

Rz(◊4) Ry(◊5) Rz(◊6)
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Rz(◊10) Ry(◊11) Rz(◊12)

q0

q1

q2

q3

Rz(◊1) Ry(◊2) Rz(◊3)

U(„̨) ¥ exp(i„̨H)
Rz(◊4) Ry(◊5) Rz(◊6)

Rz(◊7) Ry(◊8) Rz(◊9)

Rz(◊10) Ry(◊11) Rz(◊12)

3VQC1 VQC2

F = − β−1S + ⟨H⟩β

} }

Selisko et al., 2208.07621 

arXiv: 2406.15545

https://arxiv.org/abs/2406.15545
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Finite-temperature SYK model

Results from PennyLane simulator
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• We are entering an era where we can do small computations reliably on quantum computers. 
Exploring these toy models will hopefully reveal to us better algorithms/methods. 

• It is important to note that if we can model the noise in these quantum devices, we can mitigate 
and get reasonable results!  

• Preparation of thermal states and its purifications known as TFD states is still challenging and 
search for better ways to do this (by minimizing over gate costs and improving fidelity) is 
interesting research direction. 

Summary
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Resources and Data Statement

Both classical and quantum code available at: https://github.com/rgjha/SYKquantumcomp



Thank you
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