Quantum algorithms for simulating the Schwinger model

Based on Quantum 8, 1474 (2024), arXiv:2311.17388

2024/11/17 Tensor Network 2024

Kazuki Sakamoto

Graduate School of Engineering Science, Osaka University

Today's Content

- 1. Quantum algorithms for simulating quantum systems
	- \triangleright Why do we use quantum computers?
	- ➢ Trotter formula (Conventional method)
	- ➢ Quantum singular value transformation (Recent method)
- 2. Application to particle physics
	- ➢ Our recent work:

efficient quantum algorithm for simulating the Schwinger model

Quantum algorithms for simulating quantum systems

Introduction to quantum computers

▌**Computers which utilize the properties of quantum systems**

- ➢ Quantum computers are expected to obtain (**exponential) quantum speed ups** over classical computers for some problems.
	- **Quantum simulation** S. Lloyd, Science, (1996).

- Condensed matter physics
- Quantum chemistry
- High energy physics

• **Linear algebraic problems**

A. W. Harrow, Phys. Rev. Lett., (2009).

$$
A\left|x\right\rangle =\left|b\right\rangle
$$

-
- Fluid dynamics simulation
- Machine learning
- Data analysis

Introduction to quantum computers

▌**Components of a quantum computer**

Qubit

- ‐ 2-dim quantum states. $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ $|\alpha|^2 + |\beta|^2 = 1$
- ‐ multiple qubit states are described by tensor product. $|\psi_1\rangle \otimes |\psi_2\rangle \otimes \cdots \otimes |\psi_n\rangle$
- n -qubit states are equivalent to 2^n -dim vectors.

$$
|\psi\rangle = \sum_{n=0}^{2^n - 1} \psi_n |n\rangle = \begin{bmatrix} \psi_0 \\ \psi_1 \\ \vdots \\ \psi_{2^n - 1} \end{bmatrix}
$$

- ‐ Quantum states are evolved under unitary operations.
- n -qubit unitary gates are $2^n \times 2^n$ unitary matrices.

$$
\left[\begin{array}{c}\psi_0'\\ \psi_1'\\ \vdots\\ \psi_{2^n-1}'\end{array}\right]=\left[\begin{array}{cc} \ & \ & \ \\ \ & \ & \ \\ \ & \ & \ \\ \ & \ & \ \\ \end{array}\right]\left[\begin{array}{c}\psi_0\\ \psi_1\\ \vdots\\ \psi_{2^n-1}\end{array}\right]
$$

 $-$ {H, CNOT, T} gate set is universal and usually used.

Unitary gate **Measurement**

- ‐ We have to measure the evolved state to extract information (solution).
- ‐ Measurement protocol performs the task efficiently.
	- \checkmark Which qubits?
	- \checkmark Which basis?
	- \checkmark How many samples?

Introduction to quantum computers

▌**Quantum circuits – diagrams of quantum computing procedures**

Quantum algorithms ≈ Constructing a quantum circuit to solve a given problem

Hamiltonian simulation

- ➢ Hamiltonian simulation is one of the promising task with **exponential quantum advantage**.
- ➢ Problem statement:

S. Lloyd, Science, (1996).

Input: a Hamiltonian *H* and an initial quantum state $|\psi\rangle$.

Output: the evolved quantum state $e^{-iHt}|\psi\rangle$.

How to construct a quantum circuit for simulating a Hamiltonian?

Trotter formula (Conventional method) S. Lloyd, Science, (1996).

▌**Divide the whole evolution into short time evolution of each term**

- > Given a Hamiltonian $A + B$, we can implement $e^{-i(A+B)t}$ if we have e^{-iAt} and e^{-iBt} .
- ➢ (first-order) Trotter formula:

$$
e^{-i(A+B)t} = \left(e^{-iAt/r}e^{-iBt/r}\right)^r + O\left(\frac{\|[A,B]\|t^2}{r}\right)
$$

A. M. Childs, et al. Phys. Rev. X, (2021).

 \triangleright To achieve the total error ε , we set

$$
r = O\left(\frac{\|[A,B]\|t^2}{\varepsilon}\right)
$$

Trotter formula (Conventional method) S. Lloyd, Science, (1996).

▌**Example: transverse field Ising model**

$$
H_{TIM} = \sum_{i,j=1}^{n} J_{ij} Z_i Z_j + \sum_{i=1}^{n} h_i X_i
$$

 \triangleright Trotter formula implies that we only need to implement

Quantum singular value transformation (Recent method)

A. Gilyen, et al, STOC (2019)

Frotter formula achieves the complexity of $O(||[A, B]||t^2/\varepsilon)$.

Can we further improve this complexity?

- \triangleright Quantum singular value transformation (QSVT) achieves $O(||H||t + log(1/\varepsilon))$.
	- Provably optimal complexity in terms of $||H||, t, 1/\varepsilon$.
- \triangleright QSVT implements a polynomial transformation of any matrix.
	- Today we focus on a Hermitian matrix H .

A. Gilyen, et al, STOC (2019)

Quantum singular value transformation (Recent method)

- A. Gilyen, et al, STOC (2019)
- \triangleright **Block-encoding:** embed a Hamiltonian *H* into a unitary operator *U*. S. Chakraborty, et al, ICALP, (2019)

$$
U = |0^b\rangle\langle 0^b | \otimes H + \dots = \begin{bmatrix} H & \cdot \\ \cdot & \cdot \end{bmatrix}
$$

Let parametrized reflection operator $R(\phi)$ as:

$$
R(\phi) = e^{i\phi} |0^b\rangle \langle 0^b | \otimes I + e^{-i\phi} (I - |0^b\rangle \langle 0^b |) \otimes I
$$

- ‐ This operator can be implemented using multi-controlled gates.
- Surprisingly, a sequence of U and $R(\phi)$ provides a polynomial transformation of H.

$$
R(\phi_d)U \cdots R(\phi_2)U^{\dagger}R(\phi_1)UR(\phi_0) = \begin{bmatrix} P(H) & \cdot \\ \cdot & \cdot \end{bmatrix} \qquad d \text{: degree of polynomial } P
$$

> QSVT with polynomial approximation of e^{-iHt} provides a new Hamiltonian simulation method. $e^{-iHt} \approx \sum_{k=0}^{d} \beta_k H^k$ with $d = O(||H||t + \log(1/\varepsilon))$

Block-encoding

Example: linear combination of unitary operators

$$
H = \sum_{l=0}^{L-1} \alpha_l U_l
$$

- Assume $a_l > 0$ and $\sum_l a_l = 1$.

➢ Let PREPARE operator and SELECT operator as:

$$
\text{PREPARE} |0^b\rangle = \sum_{l=0}^{L-1} \sqrt{\alpha_l} |l\rangle \qquad \text{SELECT} = \sum_{l=0}^{L-1} |l\rangle \langle l| \otimes U_l
$$

➢ Block-encoding circuit:

R. Babbush, et al. Phys. Rev. X, (2018).

 \triangleright PREPARE and SELECT can be implemented with $O(L)$ getes.

Summary – Hamiltonian simulation

- > Trotter formula $e^{-i(A+B)t} \approx (e^{-iAt/r}e^{-iBt/r})^r$
	- The complexity of $O(t^2/\varepsilon)$
	- ‐ Simple implementation
- > Quantum singular value transformation (QSVT) $e^{-iHt} \approx \sum_{n=1}^{d} \beta_k H^k$
	- The optimal complexity of $O(t + \log(1/\varepsilon))$
	- ‐ Applicable to a block-encoded Hamiltonian

$$
R(\phi_d)U \cdots R(\phi_2)U^{\dagger}R(\phi_1)UR(\phi_0) = \begin{bmatrix} e^{-iHt} \\ \cdot \end{bmatrix}
$$

Efficient implementation of block-encoding is important!

Our recent work: efficient quantum algorithm for simulating the Schwinger model

Kazuki Sakamoto, Hayata Morisaki, Junichi Haruna, Etsuko Itou, Keisuke Fujii, Kosuke Mitarai, "End-to-end complexity for simulating the Schwinger model on quantum computers", Quantum 8, 1474 (2024), arXiv:2311.17388

Schwinger model

15/24

Schwinger model

Previous works (real time evolution e^{-iHt} **)**

- ‐ The Hamiltonian formulation without electric field
	- E. A. Martinez, et al, Nature 534, 516 (2016).
	- N. H. Nguyen, et al, PRX Quantum 3, 020324 (2022). **....................**.........
		- ‐ Based on Trotter formula
- System size $:N$
- **Precision** : ε
- Evolution time : t

Our work **.....................**

 $\tilde{O}(N^4t + \log(1/\varepsilon))$

 $\tilde{O}(N^{2.5}t^{1.5}/\varepsilon$

 $4.5t^{1.5}/\varepsilon^{0.5}$

- ‐ The Hamiltonian formulation which includes electric field
	- A. F. Shaw, et al, Quantum 4, 306 (2020). **Increased A. F. Shaw, et al.** Quantum 4, 306 (2020).
		- ‐ Based on Trotter formula
		- ‐ Provides rigorous cost analysis
	- Y. Tong, et al, Quantum 6, 816 (2022). \cdots $\$
		- ‐ The smallest query complexity at present
		- ‐ Needs a huge number of qubits

Rigorous resource estimates without scaling are needed for a comparison.

16/24

Runtime is estimated via the number of T gates

T gate is costly in FTQC due to error correction

- \triangleright An arbitrary unitary operator can be decomposed into Clifford + T gates.
- ➢ Clifford gates are easy, but T gates need large space-time overhead.

R. Babbush, et al. Phys. Rev. X, (2018).

The number of T gates dominates actual runtime.

Result – efficient block-encoding

➢ The Schwinger model Hamiltonian after Jordan-Wigner transformation:

$$
H_S = J \sum_{n=0}^{N-2} \left(\sum_{i=0}^n \frac{Z_i + (-1)^i}{2} + \frac{\theta_0}{2\pi} \right)^2 + \frac{w}{2} \sum_{n=0}^{N-2} \left(X_n X_{n+1} + Y_n Y_{n+1} \right) + \frac{m}{2} \sum_{n=0}^{N-1} (-1)^n Z_n
$$

 \triangleright Naively, we need $O(N^2)$ T gates for the block-encoding since H_S has $O(N^2)$ terms.

Our implementation requires only $O(N)$ T gates.

Decompose the Hamiltonian into several parts as below:

$$
H_S = \underbrace{\left(\frac{J}{4} \sum_{n=1}^{N-1} \left(\sum_{i=0}^{n-1} Z_i \right)^2 \right)}_{n \text{ is even}} + \underbrace{\left(\frac{J}{2\pi} \sum_{n=1}^{N-1} \sum_{i=0}^{n-1} Z_i \right)}_{n \text{ is even}} + \underbrace{\left(\frac{1}{2} + \frac{\theta}{2\pi} \right) \sum_{n=1}^{N-1} \sum_{i=0}^{n-1} Z_i}{n \text{ is even}} + \underbrace{\left(\frac{w}{2} \sum_{n=0}^{N-2} X_n X_{n+1} \right)}_{n \text{ is odd}} + \underbrace{\left(\frac{w}{2} \sum_{n=0}^{N-2} Y_n Y_{n+1} \right)}_{n \text{ is even}} + \underbrace{\left(\frac{w}{2} \sum_{n=0}^{N-1} Y_n Y_{n+1} \right)}_{n \text{ is even}} + \underbrace{\left(\frac{w}{2} \sum_{n=0}^{N-1} Y_n Y_{n+1} \right)}_{n \text{ is even}} + \underbrace{\left(\frac{w}{2} \sum_{n=0}^{N-1} Y_n Y_{n+1} \right)}_{n \text{ is even}} + \underbrace{\left(\frac{w}{2} \sum_{n=0}^{N-1} Y_n Y_{n+1} \right)}_{n \text{ is even}} + \underbrace{\left(\frac{w}{2} \sum_{n=0}^{N-1} Y_n Y_{n+1} \right)}_{n \text{ is even}} + \underbrace{\left(\frac{w}{2} \sum_{n=0}^{N-1} Y_n Y_{n+1} \right)}_{n \text{ is even}} + \underbrace{\left(\frac{w}{2} \sum_{n=0}^{N-1} Y_n Y_{n+1} \right)}_{n \text{ is even}} + \underbrace{\left(\frac{w}{2} \sum_{n=0}^{N-1} Y_n Y_{n+1} \right)}_{n \text{ is even}} + \underbrace{\left(\frac{w}{2} \sum_{n=0}^{N-1} Y_n Y_{n+1} \right)}_{n \text{ is even}} + \underbrace{\left(\frac{w}{2} \sum_{n=0}^{N-1} Y_n Y_{n+1} \right)}_{n \text{ is even}} + \underbrace{\left(\frac{w}{2} \sum_{n=0}^{N-1} Y_n Y_{n+1} \right)}_{n \text{ is even}} + \underbrace{\left(\frac{w}{2} \sum_{
$$

- Uniform superposition states $\frac{1}{\sqrt{2}}$ $\frac{1}{N}\sum_{i=0}^{N-1} |i\rangle$ can be prepared efficiently with $O(\log N)$ T gates.

Y. R. Sanders, et al, PRX Quantum (2020).

Leading to efficient block-encodings of each term

‐ Take a linear combination of the block-encodings of each term

Result – efficient block-encoding

Simulating the creation and annihilation of particle pairs

- The ground state of H_S for $J = \theta_0 = w = 0$, $m = m_0$ is the vacuum state. $|vac\rangle = |1010... \rangle$
	- ‐ The state without any particle.
- Evolve |vac) under H_S for time t and estimate the amplitude of |vac).

 $|\mathrm{vac}|e^{-iH_S t}|\mathrm{vac}\rangle| \quad :$ vacuum persistence amplitude

J. Schwinger, Phys. Rev. (1951).

‐ Simulation of the creation and annihilation of electron-positron pairs.

Based on our block-encoding, how much resource is required to compute this quantity?

▐ **Runtime**

Parameters • Precision (additive error) : $\varepsilon = 0.01$ $10³$ • Evolution time $\qquad t = 4$ [days] • T gate consumption rate : 1MHz 200
 10^2 • Lattice spacing $: a = 0.2$ θ electron mass $\therefore m = 0.1$ • $w = \frac{1}{24}$ untime $\frac{1}{2a} = 2.5$ 26 • $J=\frac{g^2a}{2}$ $10¹$ $\frac{a}{2} = 0.1, (g = 1)$ • $\theta_0 = \pi$ $10⁰$ **Examples System size Runtime [days]** 64 10^2 128
system size N $10¹$ 64 26 128 200

Runtime for calculating the vacuum persistence amplitude.

21/24

The number of physical qubits

Parameters

- Precision (additive error) : $\varepsilon = 0.01$
- Evolution time : $t = 4$
- Lattice spacing $: a = 0.2$
- θ electron mass $\therefore m = 0.1$

$$
\bullet \quad w = \frac{1}{2a} = 2.5
$$

•
$$
J = \frac{g^2 a}{2} = 0.1
$$
, $(g = 1)$

•
$$
\theta_0 = \pi
$$

22/24

Conclusion

• Comparison to other physical models

Summary

- An efficient block-encoding of the Schwinger model Hamiltonian
	- Decompose the Hamiltonian into several parts.
	- Use $O(log^2 N)$ T gates for P, $O(N)$ T gates for V, with a normalization factor of $O(N^3)$.
- End-to-end complexity for the Schwinger model
	- ‐ Estimate the vacuum persistence amplitude.
	- The T gate speed of 1 MHz is minimum requirement.

K. Sakamoto, et. al. Quantum 8, 1474 (2024)

Appendix