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Today’s Content

1. Quantum algorithms for simulating quantum systems

2.  Application to particle physics

➢ Why do we use quantum computers?

➢ Trotter formula (Conventional method)

➢ Quantum singular value transformation (Recent method)

➢ Our recent work: 

efficient quantum algorithm for simulating the Schwinger model
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Quantum algorithms for simulating quantum systems
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▌Computers which utilize the properties of quantum systems 

• Linear algebraic problems

Introduction to quantum computers

• Quantum simulation

➢ Quantum computers are expected to obtain (exponential) quantum speed ups over classical 

computers for some problems.

• Condensed matter physics

• Quantum chemistry

• High energy physics

• Fluid dynamics simulation

• Machine learning

• Data analysis

M. Reiher, et al. PNAS, (2017). • Factoring

S. Lloyd, Science, (1996). 
A. W. Harrow, Phys. Rev. Lett., (2009). 
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▌Components of a quantum computer 

Qubit

Introduction to quantum computers

Unitary gate Measurement

‐ We have to measure the 

evolved state to extract 

information (solution).

‐ Quantum states are evolved 

under unitary operations.

‐ 2-dim quantum states.

‐ 𝑛-qubit states are equivalent 

to 2𝑛-dim vectors.

‐ 𝑛-qubit unitary gates are 

2𝑛 × 2𝑛 unitary matrices.

𝑈

‐ Measurement protocol 

performs the task efficiently.

‐ 𝐻, CNOT, 𝑇  gate set is 

universal and usually used.

‐ multiple qubit states are 

described by tensor product.

✓ Which qubits? 

✓ Which basis? 

✓ How many samples? 
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▌Quantum circuits – diagrams of quantum computing procedures

Introduction to quantum computers

Quantum algorithms ≈ Constructing a quantum circuit to solve a given problem

Qubits 

(quantum states)
Unitary gates

(time evolution)

Measurement
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Hamiltonian simulation

➢ Hamiltonian simulation is one of the promising task with exponential quantum advantage.

➢ Problem statement:

Input: a Hamiltonian 𝐻 and an initial quantum state 𝜓 . 

Output: the evolved quantum state 𝑒−𝑖𝐻𝑡 𝜓 .

How to construct a quantum circuit for simulating a Hamiltonian?

𝜓 𝑒−𝑖𝐻𝑡 𝜓

Input Output

S. Lloyd, Science, (1996). 
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▌Divide the whole evolution into short time evolution of each term

Trotter formula (Conventional method)

➢ (first-order) Trotter formula:

➢ Given a Hamiltonian 𝐴 + 𝐵, we can implement 𝑒−𝑖 𝐴+𝐵 𝑡 if we have 𝑒−𝑖𝐴𝑡 and 𝑒−𝑖𝐵𝑡.

➢ To achieve the total error 𝜀, we set

S. Lloyd, Science, (1996). 

A. M. Childs, et al. Phys. Rev. X, (2021). 
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▌Example: transverse field Ising model

Trotter formula (Conventional method)

➢ Trotter formula implies that we only need to implement

𝑒−𝑖𝑋𝑖𝜃 and 𝑒−𝑖𝑍𝑖𝑍𝑗𝜃

just a Pauli X rotation gate

𝑒−𝑖𝐻𝑇𝐼𝑀𝑡 ≈

𝑒−𝑖 σ𝑖𝑗 𝐽𝑖𝑗𝑍𝑖𝑍𝑗 Τ𝑡 𝑟 𝑒−𝑖 σ𝑖 ℎ𝑖𝑋𝑖 Τ𝑡 𝑟 Repeat 𝑟 times

= 𝑒−𝑖𝑍𝑖𝑍𝑗𝜃

S. Lloyd, Science, (1996). 
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Quantum singular value transformation (Recent method)

➢ Trotter formula achieves the complexity of 𝑂 Τ𝐴, 𝐵 𝑡2 𝜀 .

Can we further improve this complexity?

Yes!

➢ Quantum singular value transformation (QSVT) achieves 𝑂 𝐻 𝑡 + log Τ1 𝜀 .

‐ Provably optimal complexity in terms of 𝐻 , 𝑡, Τ1 𝜀.

➢ QSVT implements a polynomial transformation of any matrix.

‐ Today we focus on a Hermitian matrix 𝐻. 

A. Gilyen, et al, STOC (2019)

A. Gilyen, et al, STOC (2019)
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Quantum singular value transformation (Recent method)

𝑈 = 0𝑏 0𝑏 ⊗𝐻 +⋯ =
𝐻 ⋅
⋅ ⋅

➢ Block-encoding: embed a Hamiltonian 𝐻 into a unitary operator 𝑈.

➢ Let parametrized reflection operator 𝑅 𝜙  as: 

𝑅 𝜙 = 𝑒𝑖𝜙 0𝑏 0𝑏 ⊗ 𝐼 + 𝑒−𝑖𝜙 𝐼 − 0𝑏 0𝑏 ⊗ 𝐼

‐ This operator can be implemented using multi-controlled gates.

➢ Surprisingly, a sequence of 𝑈 and 𝑅 𝜙 provides a polynomial transformation of 𝐻.

➢ QSVT with polynomial approximation of 𝑒−𝑖𝐻𝑡 provides a new Hamiltonian simulation method.

𝑅 𝜙𝑑 𝑈⋯𝑅 𝜙2 𝑈†𝑅 𝜙1 𝑈𝑅 𝜙0 = 𝑃 𝐻 ⋅
⋅ ⋅ 𝑑: degree of polynomial 𝑃

with 𝑑 = 𝑂 𝐻 𝑡 + log Τ1 𝜀

S. Chakraborty, et al, ICALP, (2019)

A. Gilyen, et al, STOC (2019)
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▌Example: linear combination of unitary operators

Block-encoding

➢ Let PREPARE operator and SELECT operator as: 

‐ Assume 𝑎𝑙 > 0 and σ𝑙 𝑎𝑙 = 1.

➢ PREPARE and SELECT can be implemented with 𝑂 𝐿  getes.

➢ Block-encoding circuit:

When the measurement 

outcome is 0𝑏

0𝑏

𝜓

0𝑏

𝐻 𝜓

R. Babbush, et al. Phys. Rev. X, (2018). 
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Summary – Hamiltonian simulation

➢ Trotter formula 𝑒−𝑖 𝐴+𝐵 𝑡 ≈ 𝑒−𝑖𝐴 Τ𝑡 𝑟𝑒−𝑖𝐵 Τ𝑡 𝑟 𝑟
 

‐ The complexity of 𝑂 Τ𝑡2 𝜀

‐ Simple implementation

➢ Quantum singular value transformation (QSVT) 

‐ The optimal complexity of 𝑂 𝑡 + log Τ1 𝜀

‐ Applicable to a block-encoded Hamiltonian

𝑅 𝜙𝑑 𝑈⋯𝑅 𝜙2 𝑈†𝑅 𝜙1 𝑈𝑅 𝜙0 = 𝑒−𝑖𝐻𝑡 ⋅
⋅ ⋅

Efficient implementation of block-encoding is important!
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Our recent work: 
efficient quantum algorithm for simulating the Schwinger model

Kazuki Sakamoto, Hayata Morisaki, Junichi Haruna, Etsuko Itou, Keisuke Fujii, Kosuke Mitarai, 

“End-to-end complexity for simulating the Schwinger model on quantum computers”,

Quantum 8, 1474 (2024), arXiv:2311.17388
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Schwinger model

⋯ ⋯
Electron Positron

Electric field

Electron ElectronPositron Positron

Two types of Hamiltonian 

formulation

➢ one of the simplest yet non-trivial gauge theories

⋯ ⋯⋯ ⋯

Λ Λ Λ Λ Λ

−Λ −Λ −Λ −Λ −Λ

Truncate the electric field at Λ
Remove the electric field with 

Gauss’s law

Our work

J. Kogut, et al, Phys. Rev. D (1975). T. Banks, et al, Phys. Rev. D (1976). 
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Schwinger model

▐ Previous works (real time evolution 𝒆−𝒊𝑯𝒕) 

‐ The Hamiltonian formulation which includes electric field

E. A. Martinez, et al, Nature 534, 516 (2016).
N. H. Nguyen, et al, PRX Quantum 3, 020324 (2022). 𝑂 Τ𝑁4.5𝑡1.5 𝜀0.5

Y. Tong, et al, Quantum 6, 816 (2022). ෨𝑂 𝑁𝑡 polylog( Τ1 𝜀 )

‐ The smallest query complexity at present

‐ Needs a huge number of qubits

෨𝑂 Τ𝑁2.5𝑡1.5 𝜀0.5 )A. F. Shaw, et al, Quantum 4, 306 (2020). 

‐ Based on Trotter formula

‐ Provides rigorous cost analysis

Our work ෨𝑂 𝑁4𝑡 + log Τ1 𝜀

‐ Based on Trotter formula

‐ The Hamiltonian formulation without electric field

Rigorous resource estimates without scaling are needed for a comparison.

• System size    : 𝑁
• Precision         : 𝜀
• Evolution time : 𝑡
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Runtime is estimated via the number of T gates

▐ T gate is costly in FTQC due to error correction

➢ An arbitrary unitary operator can be decomposed into Clifford + T gates. 

➢ Clifford gates are easy, but T gates need large space-time overhead.

R. Babbush, et al. Phys. Rev. X, (2018). 

The number of T gates dominates actual runtime.

≪
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Result – efficient block-encoding

➢ The Schwinger model Hamiltonian after Jordan-Wigner transformation: 

➢ Naively, we need 𝑂 𝑁2 T gates for the block-encoding since 𝐻𝑆 has 𝑂 𝑁2 terms. 

◆ Our implementation requires only 𝑶 𝑵 T gates. 

‐ Decompose the Hamiltonian into several parts as below:

‐ Take a linear combination of the block-encodings of each term

‐ Uniform superposition states 
1

𝑁
σ𝑖=0
𝑁−1 𝑖 can be prepared efficiently with 𝑂 log𝑁 T gates.

Leading to efficient block-encodings of each term
Y. R. Sanders, et al, PRX Quantum (2020).

A. Gilyen, et al, STOC (2019)
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Result – efficient block-encoding

▐ Overall circuit description
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Result – resource estimates

▐ Simulating the creation and annihilation of particle pairs

• The ground state of 𝐻𝑆 for 𝐽 = 𝜃0 = 𝑤 = 0,𝑚 = 𝑚0 is the vacuum state. 

vac = |1010… ⟩
‐ The state without any particle.

• Evolve vac under 𝐻𝑆 for time 𝑡 and estimate the amplitude of vac .

vac 𝑒−𝑖𝐻𝑆𝑡 vac

‐ Simulation of the creation and annihilation of electron-positron pairs.

：vacuum persistence amplitude

Based on our block-encoding, 

how much resource is required to compute this quantity?

J. Schwinger, Phys. Rev. (1951).
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Result – resource estimates

▐ Runtime

Runtime for calculating the vacuum persistence amplitude.

• Parameters

Examples

System size Runtime [days]

64 26

128 200

• Precision (additive error) : 𝜀 = 0.01
• Evolution time                 : 𝑡 = 4
• T gate consumption rate : 1MHz

• Lattice spacing                : 𝑎 = 0.2
• electron mass                  : 𝑚 = 0.1

• 𝑤 =
1

2𝑎
= 2.5

• 𝐽 =
𝑔2𝑎

2
= 0.1, (𝑔 = 1)

• 𝜃0 = 𝜋

64 128

26

200
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Result – resource estimates

▐ The number of physical qubits

Examples (𝑁 = 64)

Physical error rate Physical pubits

10−3 9 × 105 

10−4 2 × 105 
The number of physical qubits 

for calculating the vacuum persistence amplitude.

• Parameters

• Precision (additive error) : 𝜀 = 0.01
• Evolution time                 : 𝑡 = 4
• Lattice spacing                : 𝑎 = 0.2
• electron mass                  : 𝑚 = 0.1

• 𝑤 =
1

2𝑎
= 2.5

• 𝐽 =
𝑔2𝑎

2
= 0.1, (𝑔 = 1)

• 𝜃0 = 𝜋

22/24



Result – resource estimates

▐ Comparison with the previous work (real time evolution 𝒆−𝒊𝑯𝒕)
A. F. Shaw, et al, Quantum (2020) 

Our work (QSVT)   : ෨𝑂 𝑁4𝑡 + log Τ1 𝜀

The previous work (Trotter)

: ෨𝑂 Τ𝑁2.5𝑡1.5 𝜀0.5

domain Which is better?

Long-time Our work

High-precision Our work

Large-system Previous work • Parameters

• Precision (additive error) : 𝜀 = 0.01
• Evolution time                  : 𝑡 = 4
• Lattice spacing               : 𝑎 = 0.2
• Electron mass                  : 𝑚 = 0.1

• 𝑤 =
1

2𝑎
= 2.5

• 𝐽 =
𝑔2𝑎

2
= 0.1, (𝑔 = 1)

• 𝜃0 = 𝜋

• Qubit requirement

𝑁 + 𝑂 log𝑁 ≪ 𝑂 𝑁 log𝑁

Our work Previous work
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Conclusion

• Comparison to other physical models

< ≈
N. Yoshioka, et al, npj Quantum Information 4, 45 (2024) J. Lee, et al, PRX Quantum (2021)

T count : ~108 ~1012 ~1012

Condensed matter physics 

(e.g. Hubbard model)
Schwinger model

Quantum chemistry 

(electronic Hamiltonian)

▐ Summary

• An efficient block-encoding of the Schwinger model Hamiltonian

• End-to-end complexity for the Schwinger model

‐ Decompose the Hamiltonian into several parts.

‐ Use 𝑂 log2𝑁 T gates for 𝑃, 𝑂 𝑁 T gates for 𝑉, 

with a normalization factor of 𝑂 𝑁3 .

‐ Estimate the vacuum persistence amplitude.

‐ The T gate speed of 1 MHz is minimum requirement.

K. Sakamoto, et. al. Quantum 8, 1474 (2024)
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Appendix

25/24


	スライド 1: Quantum algorithms  for simulating the Schwinger model
	スライド 2: Today’s Content
	スライド 3: Quantum algorithms for simulating quantum systems
	スライド 4
	スライド 5
	スライド 6
	スライド 7
	スライド 8
	スライド 9
	スライド 10
	スライド 11
	スライド 12
	スライド 13
	スライド 14: Our recent work:  efficient quantum algorithm for simulating the Schwinger model
	スライド 15
	スライド 16
	スライド 17
	スライド 18
	スライド 19
	スライド 20
	スライド 21
	スライド 22
	スライド 23
	スライド 24
	スライド 25

