

4次元のATRGにおける高速化手法について ON ACCELERATION METHODS FOR THE ATRG IN FOUR DIMENSIONS

Yuto Sugimoto, Shoichi Sasaki (Nuclear Theory, Tohoku U.)

TN24@KANAZAWA 2024/11/15

ABOUT TENSOR RENORMALIZATION GROUP

[M. Levin and C. P. Nave, (2007).] [Xie et al, (2012).]

Tensor Renormalization Group = Numerical Real space Renormalization Group

 \rightarrow A candidate for overcoming sign problems in LQCD

TRG is applicable for sign problem region, but has large cost at higher dimensions

OTHER APPROACHES TO HIGHER DIMENSIONS

	HOTRG [Xie et al, (2012).]	ATRG [D. Adachi, T. Okubo, and S. Todo, (2020).]	Triad TRG [D. Kadoh and K. Nakayama, (2019).]	MDTRG Triad rep. [K. Nakayama, (2023).]
cost	$O(\chi^{4d-1})$	$O(\chi^{2d+1})$	$O(\chi^{d+3})$	$O(qr^3\chi^{d+3})$
Fundamental tensor	$O(\chi^{2d})$	$O(\chi^{d+1})$	$O(\chi^3)$	$O(\chi^{d+1})$
methods	Exact Contraction	 Bond-swapping via RSVD Exact Contraction 	 Triad Contraction via RSVD 	 Decomposition of unit-cell tensor Triad Internal line oversampling Contraction via RSVD

Our motivation is to search for a more efficient algorithm for four-dimensional theories.

TN24@KANAZAWA 2024/11/15

COST REDUCTION FOR HIGHER DIMENSIONS – ATRG

[D. Adachi, T. Okubo, and S. Todo, (2020).]

Two reason for the cost reduction

- ✓ The fundamental tensor has d+1 legs.
- \checkmark By performing bond swapping, the number of isometries is reduced by 1/2.

The cost of ATRG is χ^{2d+1} ! (HOTRG was χ^{4d-1}) RSVD is used in the bond-swapping step

TN24@KANAZAWA 2024/11/15

COST REDUCTION FOR HIGHER DIMENSIONS – MDTRG TRIAD REP.

[K. Nakayama, (2023).]

Difference from ATRG is

TN24@KANAZAWA 2024/11/15

- ✓ Using RSVD with QR iteration in contraction step (approximated SVD scheme)
- ✓ Oversampling of internal line $\chi \to r \chi$
- Decomposition of Unit-cell tensor

MDTRG is more accurate than Triad TRG , almost same accuracy of HOTRG

→ MDTRG-Triad rep. is improved version of Triad TRG, which cost is $O(qr^3\chi^{d+3})$

CONSIDERATION ON VARIOUS METHOD IN 4D

• In 4D systems, it is Trade-off between accuracy and computation cost

	HOTRG [Xie et al, (2012).]	ATRG [D. Adachi, T. Okubo, and S. Todo, (2020).]	MDTRG Triad rep. [K. Nakayama, (2023).]
cost	$O(\chi^{15})$	$O(\chi^9)$ \bigcirc	$O(qr^3\chi^7)$?
Accuracy			?
Problem	• Large cost, difficult to enlarge χ	 Large cost The convergence of free energy is not as good in the 2D cases. 	 Investigation is needed

We aim for faster algorithms!

	ATRG [D. Adachi, T. Okubo, and S. Todo, (2020).]	Triad-MDTRG
Cost in 4D	$O(\chi^9)$	$O(qr^3\chi^7)$
methods	 Bond-swapping via RSVD Exact Contraction 3 isometry in the contraction step 	 Decomp. of Unit- cell tensor Triad Internal line oversampling
		 Contraction via RSVD

Triad-ATRG ?

Research

TN24@KANAZAWA 2024/11/15

TRIAD REPRESENTATION OF ATRG

- We consider triad representation of ATRG
- Consider HOSVD of unit cell tensor $\Gamma = AX\sigma YD$ after the Bond swapping
- SVD of $AX\sigma$ and σYD provides SVD of Γ thanks to canonical form
- Triad legs are oversampled $\chi \rightarrow r \chi$
- Computational cost of this procedure is $O(\chi^7)$ (If we use RSVD, $O(qr\chi^6)$)

TRIAD REPRESENTATION OF ATRG

- However, in four dimensions, the order of computational cost does not change even if not all tensors are converted into triad form. Therefore, we use a form with as few decompositions as possible.
- We obtain <u>4 legs tensors $E, F, G, H \in \mathbb{C}^{\chi \times \chi \times \chi \times r\chi}$ and 3 legs tensors $I, J, K, L \in \mathbb{C}^{\chi \times \chi \times r\chi}$ (we call this form as triad rep.) oversampled</u>

MAKING SQUEEZERS

- We derive squeezers in the same manner of ATRG [S. Akiyama, phd, 2022.]
- since Γ is not canonical form anymore, we must decompose $\Gamma \simeq EFGHIJKL$
- We can calculate separately by introducing the Gramm-matrix of. *EFIJ* and *GHKL*

MAKING SQUEEZERS

- Computational cost of this procedure is $\min(O(\chi^7), O(r^2\chi^6))$
- All decomposition in this procedure are SVDs of $\Gamma(n)\Gamma(n+\hat{\mu})$ as in the improved ATRG

[S. Akiyama, phd, 2022.] [S. Iino, S. Morita, and N. Kawashima, (2019).] [D. Adachi, T. Okubo, and S. Todo, (2022).]

CONTRACTION STEP

- Thanks to the Triad form, Computational cost is reduced to $O(r^2\chi^7)$, smaller than ATRG ($O(\chi^9)$) Bottleneck
- We do not use RSVD since we already used it once in the bond-swapping step

SUMMARY OF COMPUTATIONAL COST

Step	ATRG	Triad ATRG
Bond Swapping	$O(qr\chi^6)$	$O(qr\chi^6)$
Make Triad	None	$O(\chi^7)$
Squeezer	$O(\chi^7)$	$O(\min(\chi^7, r^2\chi^6))$
Contraction <	$O(\chi^9)$	$O(r^2\chi^7)$

 $_{{\rm computational cost}}$

TN24@KANAZAWA 2024/11/15

ŝ

GPU PARALLELIZATION - ATRG

TN24@KANAZAWA 2024/11/15

GPU PARALLELIZATION – TRIAD-ATRG

Numerical results on 4D Ising model

FREE ENERGY

- We investigate the convergence of free energy at 4D Ising model in r=7, L=1024,T=6.65035
- The results are in high agreement with ATRG

HOTRG(D=13): $T_c = 6.650365(5)$

[S. Akiyama, Y. Kuramashi, T. Yamashita, and Y. Yoshimura, (2019).]

χ	ATRG	r=7	r=20
38	-4.9359675	-4.9359235	-4.9359646
40	-4.9362060	-4.9361825	-4.9362026
42	-4.9362695	-4.9362360	-4.9362648
44	-4.9363974	-4.9363340	-4.9363918
46	-4.9364809	-4.9364227	-4.9364746
48	-4.9365426	-4.9364745	-4.9365357
50	-4.9366373	-4.9365787	-4.9366312
52	-4.9366769	-4.9366039	-4.9366695
54	-4.9367035	-4.9366392	-4.9366959

Difference is only 0.0013%(r=7), 0.00015%(r=20)

COMPUTATIONAL TIME ON A CPU

- We investigate the computational time in r=7 using a single CPU calculation
- Scaling of the computational time is $O(\chi^7)$

COMPUTATIONAL TIME ON GPUS

- We investigate the computational time in r=7 ,L=1024 by 2 GPU parallelized calculation
- Scaling of the computational time improved significantly

TN24@KANAZAWA 2024/11/15

To determine the transition point, we evaluate the following value at each coarse-graining step. $X^{(m)} = \frac{(\mathrm{Tr}A^{(m)})^2}{\mathrm{Tr}(A^{(m)})^2}, \text{ with } A^{(m)}_{kl} = \sum T^{(m)}_{i_1i_2i_3ki_1i_2i_3l}$

HOTRG(D=13): $T_c = 6.650365(5)$ [S. Akiyama, Y. Kuramashi, T. Yamashita, and Y. Yoshimura, (2019).] [Z.-C. Gu and X.-G. Wen, (2009).]

TN24@KANAZAWA 2024/11/15

On Acceleration Methods for the ATRG in Four Dimensions

21/27

PHASE TRANSITION POINT

CONVERGENCE BEHAVIOR OF TGE TRIAD-ATRG

• Triad-ATRG converges to the ATRG as r increases

TN24@KANAZAWA 2024/11/15

PHASE TRANSITION POINT

https://www.nvidia.com/ja-jp/data-center/a100/

INTERNAL ENERGY

- We investigate the internal energy with impurity tensor method at $\chi=54$
- The difference at 0.002% at T=6.67475 and 0.2% at T=6.674

Т	ATRG	Triad-ATRG, r=20
6.67375	-0.74962536	-0.75152631
6.674	-0.74782076	-0.75000187
6.67425	-0.74669974	-0.74883493
6.6745	-0.74662574	-0.74805611
6.67475	-0.74656204	-0.74654099
6.675	-0.74650094	-0.74660892
6.67525	-0.74643774	-0.74648570

Colored bands are transition points obtained by the ATRG and Triad-ATRG.

TN24@KANAZAWA 2024/11/15

- The results of Triad-ATRG are highly consistent with the ATRG results
- Triad-ATRG significantly improves the computational cost on CPU and GPUs

Triad ATRG would be a powerful tool for 4D systems

Future works

- Calculate in more large χ
- Apply improved HOSVD
- Oversampling at bond-swapping step
- Apply to other 4D systems

END

TN24@KANAZAWA 2024/11/15

On Acceleration Methods for the ATRG in Four Dimensions

27/27

表1	memory cost of <i>I</i>		
	D	size(GB)	
	45	1.37	
	50	2.33	
	55	3.75	
	60	5.79	
	65	8.64	
	70	12.5	

Usually a GPU has 10-80GB memory →Memory cost is unnegligible

https://www.nvidia.com/ja-jp/data-center/a100/

A mutual crossing still exists \rightarrow We need more large χ ?

TN24@KANAZAWA 2024/11/15