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ABOUT TENSOR RENORMALIZATION GROUP

[M. Levin and C. P. Nave, (2007).] [Xie et al, (2012).]
Tensor Renormalization Group = Numerical Real space Renormalization Group

—A candidate for overcoming sign problems in LQCD
- o lr e lr
Z = Z TijlemanTkrstTopqr = tTr(@ivle) — ol toTk ZOTZ- ol
1,7, k,l,m,... - r - jT -
Approximate by Singular Value Decomposition (SVD) T 17 7 1
T T L1
O

' SVD Ut U contract TR
T —— T  ——— O
—O— T2 OT 2

TRG is applicable for sign problem region, but has large cost at higher dimensions
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OTHER APPROACHES TO HIGHER DIMENSIONS

HOTRG ATRG Triad TRG MDTRG Triad rep.
. [D. Adachi, T. Okubo, [D. Kadoh and K. Nakayama,
[Xie et al, (2012).] and 5. Tode, (2020} 019, y [K. Nakayama, (2023).]
cost O(x* 1) O(x 24t O(x*?) O(grex™*3)
Fundamental tensor O(x*%) O(x*1) O(x*) O(x*1)
 Exact Contraction |+ Bond-swapping * Triad  Decomposition of
thod via RSVD * Contraction via unit-cell tensor
Methoas * Exact Contraction RSVD e Triad
* |Internal line
oversampling
* Contraction via
RSVD

Our motivation is to search for a more efficient algorithm for four-dimensional theories.
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COST REDUCTION FOR HIGHER DIMENSIONS —-ATRG

[D. Adachi, T. Okubo, and S. Todo, (2020).]

Two reason for the cost reduction
v" The fundamental tensor has d+1 legs.
v' By performing bond swapping, the number of isometries is reduced by 1/2.

2d+1 l

(HOTRG was 4d 1) RSVD is used in the bond-swapping step

i) G
-
e 7.H

Unit- CeII

The cost of ATRG is X
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COST REDUCTION FOR HIGHER DIMENSIONS —MDTRG TRIAD REP.

[K. Nakayama, (2023).]

Difference from ATRG is
v" Using RSVD with QR iteration in contraction step (approximated SVD scheme)
v' Oversampling of internal line X — 7X
v' Decomposition of Unit-cell tensor
MDTRG is more accurate than Triad TRG, almost same accuracy of HOTRG

— MDTRG-Triad rep. is improved version of Triad TRG, which cost is O(qr3xd+3)

-l 7Y

%ﬂ LL —0 Olg’x**) L
S i@f@ o

Unit-Cell
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CONSIDERATION ON VARIOUS METHOD IN 4D

* In 4D systems, it is Trade-off between accuracy and computation cost

HOTRG ATRG MDTRG Triad rep.
[Xie et al, (2012).] D e ’T'(;;‘z“g)‘_’]' [K. Nakayama, (2023).]
cost O(X15)@ O(x”) @ O(qrix™) 7?
Accuracy @ @ ?
e Large cost, difficult | Large cost * Investigation is
to enlarge X * The convergence of needed
Problem ‘ :
ree energy is not
as good in the 2D
cases.
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PROPOSAL

We aim for faster algorithms!

ATRG Triad-MDTRG
[D. Adachi, T. Okubo,

and S. Todo, (2020).]

Costin 4D O(Xg) O(QT3X7)
Bond-swapping

Decomp. of Unit-

thod via RSVD cell tensor
methoas e Exact Contraction || * Triad
e 3isometryinthe | * Internalline

oversampling
Contraction via
RSVD

contraction step

Triad-ATRG ?
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Research
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TRIAD REPRESENTATION OF ATRG

 We consider triad representation of ATRG
e Consider HOSVD of unit cell tensorT" = AX oY D after the Bond swapping
e SVDof.AX o and oY D provides SVD of I"thanks to canonical form

* Triad legs are oversampled X = 7'X
* Computational cost of this procedure is O(X7) (If we use RSVD,O(quG))

TN24@KANAZAWA 2024/11/15 On Acceleration Methods for the ATRG in Four Dimensions



TRIAD REPRESENTATION OF ATRG

* However, in four dimensions, the order of computational cost does not change even if not
all tensors are converted into triad form. Therefore, we use a form with as few

decompositions as possible.
« We obtain_ 4 legs tensorsE, F,.G. H € CX*X*X*"X and 3 legs tensors/, J, K, [ € CX*X*"X

(we call this form as triad rep.) oversampled
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MAKING SQUEEZERS

 We derive squeezers in the same manner of ATRG [S. Akiyama, phd, 2022.]

* sinceT is not canonical form anymore, we must decompose I' ~ FFGHIJK L
 We can calculate separately by introducing the Gramm-matrix of. £ /' 7.Jand G H K L

UEFIJ (SEFIJ)2 UTEFIJ

g te'g

P=(GHKL)(GHKL)'
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MAKING SQUEEZERS

« Computational cost of this procedure is min(O(y"), O(r*y%))

* All decomposition in this procedure are SVDs of I'(n)['(n + /i) as in the improved ATRG
[S. Akiyama, phd, 2022.]
[S. lino, S. Morita, and N. Kawashima, (2019).]
[D. Adachi, T. Okubo, and S. Todo, (2022).]

UEFIJ (SEFIJ)Z U'}'EFIJ

@ o @

P=(GHKL)(GHKL)'
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CONTRACTION STEP

* Thanks to the Triad form, Computational cost is reduced to 0(7“2X7) , smaller than

ATRG (O(x?)) Bottleneck
* We do not use RSVD since we already used it once in the bond-swapping step

~ s
~ .~
SNemm—m—-

TN24@KANAZAWA 2024/11/15 On Acceleration Methods for the ATRG in Four Dimensions



SUMMARY OF COMPUTATIONAL COST

%1 Computational cost

Step ATRG Triad ATRG
Bond Swapping | O(grx®) O(grx®)
i Make Triad None O(x7)
5 Squeezer O(x") | O(min(x7,r*x%))
3 1 Contraction < O(x?) O(r?x"
Bottleneck
T, o :Z(F o
O(qrx®) O(x") O 0(™x") O(r*x")

e L+ SRS ¢ SRS
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GPU PARALLELIZATION -ATRG

We employ multi-GPU parallelization for contraction part

Tensor contraction
/ 2
/

A ,X ,0 ,Y, D TensorOperations.jl

\ : (A wrapper of cuTENSOR)
A G

A o
X X O<X2d+1)

—/QH
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GPU PARALLELIZATION -TRIAD-ATRG

We employ multi-GPU parallelization for contraction part

AX,0 — E,F1,P— /I

All tensors
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Numerical results on 4D Ising model
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* We investigate the convergence of free energy at 4D Ising model in r=7, [=1024,T=6.65035

* The results are in high agreement with ATRG

HOTRG(D=13): 7., = 6.650365(5)

[S. Akiyama, Y. Kuramashi, T. Yamashita, and Y. Yoshimura, (2019).]

-4.933
o o ATRG
aos | Y meamans |1 X | ATRG r=7 r=20
o | W | 38 | -4.9359675 | -4.9359235 | -4.9359646
40 | -4.9362060 | -4.9361825 | -4.9362026
-49345 | v/ .
v 42 | -4.9362695 | -4.9362360 | -4.9362648
g 4935 v 7
v, 44 | -4.9363974 | -4.9363340 | -4.9363918
g0 g ' 46 | -4.9364809 | -4.9364227 | -4.9364746
e vg 48 | -4.9365426 | -4.9364745 | -4.9365357
49365 I wvwvww 1 50 | -4.9366373 | -4.9365787 | -4.9366312
4937 | "YYyy- 52 | -4.9366769 | -4.9366039 | -4.9366695
49375 ‘ ‘ ‘ ‘ ‘ ‘ 54 | -4.9367035 | -4.9366392 | -4.9366959
10 20 30 40 50 60 70

Difference is only 0.0013%(r=7), 0.00015%(r=20)

TN24@KANAZAWA 2024/11/15




COMPUTATIONAL TIME ON A CPU

* We investigate the computational time in r=7 using a single CPU calculation
» Scaling of the computational time is O(x")

: 2T O()
A ]
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COMPUTATIONAL TIME ON GPUS

* We investigate the computational time in r=7 ,L=1024 by 2 GPU parallelized calculation
e Scaling of the computational time improved significantly

105 N T T
i o ATRG

9

8
7
6

V  Triad-ATRG =7

B O(x®)

< O(XG) Triad-ATRG could be powerful tool

Elapsed time[sec]

103

<o

<o
<o
<
<o

for GPU computations

We have used Tesla V100
16GB PCIEX?2
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PHASE TRANSITION POINT

To determine the transition point, we evaluate HOTRG(D=13): T,. = 6.650365(5)
. L. [S. Akiyama, Y. Kuramashi, T. Yamashita, and Y. Yoshimura, (2019).]
the following value at each coarse-graining step.

(T A( ))2 [Z.-C. Gu and X.-G. Wen, (2009).]
X m) — Tr(A(m))Q’ with Akl — ZTilizz‘gkilizisl

T T
26 o —&— T=6.671550 7 26 —&— T=6.67748 b
—&— T=6.671545 —&— T=6.67747

08

0.6

! ! ! ! ! ! !
0 5 10 15 20 25 30 35 40

| | | | | | |
0 5 10 15 20 25 30 35 40

ATRG Triad ATRG
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PHASE TRANSITION POINT

6.685 T T T T T T T T T T T T T T T T T

| | HOTRG(x=13): 7. = 6.650365(5)

I (D [S. Akiyama, Y. Kuramashi, T. Yamashita, and Y. Yoshimura, (2019).]
6.68 (I) (I) an (I)

I O O L O D D

| O0 0 P8 o o | Monte-Carlo: T, = 6.6803069(58)
6.675 S [P. H. Lundow and K. Markstrom, (2023).]

ONO)
cwl 0%l -
~" 667 : % @ | Difference from the ATRG results at
(ﬁ) %) x=54 is ~0.1% for r=7, and ~0.04% for
r=10,and ~0.09% for r=20

6.665

¢ ATRG

¢ Triad-ATRG, r=7
¢

¢

6.6 Triad-ATRG. =10 H

Triad-ATRG, r=15

¢ Triad-ATRG,r=20 |
1 *results of ATRG has not converged well

e P 6

6.655

38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70
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CONVERGENCE BEHAVIOR OF TGE TRIAD-ATRG

* Triad-ATRG converges to the ATRG as r increases

6.682
6.681 +
6.68 +
6.679
6.678
=" %
6.677 %
6676

I & |
: i
6.674 .

6.673

ATRG (x = 54, r = 54)

| |
10 15 20 25 30 35 40 45 50 55
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PHASE TRANSITION POINT

6.685 T T T T T T T T T T T T T T T T T
' HOTRG(x=13): 7. = 6.650365(5)
I [S. Akiyama, Y. Kuramashi, T. Yamashita, and Y. Yoshimura, (2019).]
6.68
Monte-Carlo: T,. = 6.6803069(58)
6675 | [P. H. Lundow and K. Markstrém, (2023).]
The behavior of Tc seems better
< 667 for x > 56 but has not converged yet

We have used NVIDIA A100 40GB PCIE X3

% _
D $ ATRG i | | |
[ @ ¢ Triad-ATRG, r=7 j
666 |0 b Triad-ATRG,1=10 -
i% $ Triad-ATRG,r=15 || ‘ | | |
; $ Triad-ATRG,r=20 || / / / /
6.655 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
388 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

https://www.nvidia.com/ja-jp/data-center/a100/

6.665
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« We investigate the internal energy with impurity tensor method at X = 94
* The difference at 0.002% at T=6.67475 and 0.2% at T=6.674

-0.746 T

-0.747

-0.748

-0.749

Internal energy

-0.75

-0.751

a

-0.752 :

|

|

|

|

0.002%

—6— ATRG

—&— Triad-ATRG,r=20

T ATRG Triad-ATRG, r=20

6.67375 -0.74962536 -0.75152631
6.674 -0.74782076 -0.75000187
6.67425 -0.74669974 -0.74883493
6.6745 -0.74662574 -0.74805611
6.67475 -0.74656204 -0.74654099
6.675 -0.74650094 -0.74660892
6.67525 -0.74643774 -0.74648570

|

|

|

6.6738

6.674

6.6742

6.6744

6.6746

6.6748

6.675

6.6752

Colored bands are transition points obtained by the ATRG and Triad-ATRG.
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SUMMARY AND FUTURE WORKS

* The results of Triad-ATRG are highly consistent with the ATRG results

* Triad-ATRG significantly improves the computational cost on CPU and GPUs

Triad ATRG would be a powerful tool for 4D systems

Future works

 Calculate in more large x
* Apply improved HOSVD
* Oversampling at bond-swapping step

* Apply to other 4D systems

TN24@KANAZAWA 2024/11/15 On Acceleration Methods for the ATRG in Four Dimensions



END

TN24@KANAZAWA 2024/11/15 On Acceleration Methods for the ATRG in Four Dimensions



MEMORY COST

%=1 memory cost of D

D | size(GB)

45 1.37

50 2.33 Usually a GPU has 10-80GB memory
55 3.75 —>Memory cost is unnegligible

60 5.79

65 8.64

70 12.5

https://www.nvidia.com/ja-jp/data-center/a100/
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INTERNAL ENERGY

A mutual crossing still exists>We need more large X ?

T T T T T T T T T T T T T T T T T
07464 -
07458 | .
07466 .
o 07459 | .
-0.7468 —O— -
0746 + -
-0.747 -
07461 -
= -0.7472 - >
g Y 07462 .
N =
S 07474 7 =
S S L _
§ § -0.7463
;5 -0.7476 T ;5
07464 | .
-0.7478 .
—e— ATRG n=24 07465 | .
-0.748 —— ATRGn=28 |7
07466 |- .
—e— =
07482 ATRGn=32 ||
—e— ATRG n=36 07467 L i
-0.7484 —o—ATRGn=40 |
1 1 1 1 1 1 1 1 ‘0.7468
6.67395  6.674 667405 66741 667415 66742 667425 66743 6.6727 6.6728 6.6729 6.673 6.6731
T T

ATRG x = 94 Triad-ATRG 7 = 20,x = 70
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