Numerical analysis of entanglement entropy using tensor network

G ota Tanaka $¹$ </sup>

in collaboration with Tanahiro Hayazaki² Daisuke Kadoh¹ Shinji Takeda²

¹Meiji Gakuin U. ²Kanazawa U.

November 16, 2024, Tensor Network 24

Quantum entanglement

- A correlation between two subregions of quantum many-body systems.
- **Entanglement entropy (EE) is a measure of the degree of quantum entanglement.**

$$
S_A = -\mathrm{Tr}\rho_A \log \rho_A \qquad \qquad A
$$

where ρ_A is a reduced density matrix of the subregion *A* and given by $\rho_A = \text{tr}_{\bar{A}} \rho$.

- **Entanglement entropy has many applications in various fields:**
	- Particle physics: blackhole entropy, quantum order parameter
	- Quantum information: quantum computer, quantum teleportation
	- **Condensed matter physics: phase structure of metallic condensed matter system**
- **Entanglement entropy has many applications in various fields:**
	- **Particle physics: blackhole entropy, quantum order parameter**
	- Quantum information: quantum computer, quantum teleportation
	- Condensed matter physics: phase structure of metallic condensed matter system

*→*We focus on determining the critical temperature of a (1+1)D lattice model using the EE.

Entanglement entropy and system detail

The subregion size *l* dependence of the EE *S^A* tells us the detail of the system.

Entropic c-function $C(l)$, *l*: length of the subregion A

$$
C(l) = \frac{l}{2} \frac{\partial S_A}{\partial l}
$$

C(*l*) monotonically decreases along the RG flow *→* detail of the effective degrees of freedom can be extracted.

 \blacksquare The EE on the quantum critical point is given by

$$
S(l) = \frac{c}{3} \log l + k,
$$

where *c* is a central charge and *k* is a constant.

→ central charge can be extracted.

Numerical analysis of entanglement entropy

Monte Carlo method

- calculates the entropic *c*-function.
	- e.g. 4D SU(3) gauge theory [Itou-Nagata-Nakagawa-Nakamura-Zakharov, 2015]
- **Example 3 based on the definition of the FF on lattice**

[Aoki-Iritani-Nozaki-Numasawa-Shiba-Tasaki, 2015],

has sign problem.

Numerical analysis of entanglement entropy

- **Tensor network method (In this talk, we focus on those of Lagrangian formalism)**
	- **has no sign problem.**
	- directly computes the reduced density matrix and the EE. e.g. $(1+1)D O(3)$ non-linear sigma model [Kuramashi-Luo, 2023]
	- \blacksquare is limited to the case of half-space subregion A .

Numerical analysis of entanglement entropy

- **T** Tensor network method (In this talk, we focus on those of Lagrangian formalism)
	- **has no sign problem.**
	- directly computes the reduced density matrix and the EE. e.g. $(1+1)D O(3)$ non-linear sigma model [Kuramashi-Luo, 2023]
	- \blacksquare is limited to the case of half-space subregion A .

We compute the subregion size dependence of the EE with our new method [Hayazaki-Kadoh-Takeda-GT, work in progress].

Tensor network (Lagrangian formalism)

■ Partition function can be directly computed.

We need some "coarse-graining" to reduce the computational cost.

Tensor Renormalization group (TRG)

- Recursively approximates multiple tensors as one tensor.
	- e.g. Higher-order TRG (HOTRG) algorithm

Various TRG algorithms are proposed:

A-TRG [Adachi-Okubo-Todo, 2019, 2019], Triad-TRG [Kadoh-Nakayama, 2019], etc.

Reduced density matrix *ρ^A* of the subregion A with spatial size *l*:

We simplify this network using HOTRG algorithm.

Example: total spatial size is 8 and subregion size 3.

Tensor network representation of the reduced density matrix before coarse-graining.

After one HOTRG coarse-graining procedure:

After two HOTRG coarse-graining procedures:

At this stage, we can simplify this network further!

Tensors U and U^\dagger do not contribute to the entanglement entropy.

 $S_A = -\text{tr}\rho_A \log \rho_A = -\text{tr}U^{\dagger} \rho'_A U \log(U^{\dagger} \rho'_A U) = -\text{tr}\rho'_A \log \rho'_A$

Some isometry tensors can be contracted and become an identity matrix.

Finally, we obtain the simplified tensor network of the reduced density matrix below:

We established the algorithm to obtain this final result directly.

Our algorithm

The simplified tensor network of the reduced density matrix consists of two parts: core matrix *C* and boundary factor *B*.

Our algorithm

In the following, we set the total spatial size $L_x = 2^n$, temporal size $L_t = \alpha \cdot 2^n$. The core matrix C consists of coarse-grained tensor $T^{(n-1)}.$

Our algorithm

The boundary factor B consists of isometry tensors $U^{(i)}$ and $U^{(i)\dagger}$ obtained in the coarse-graining procedure of tensor *T* (*n−*1)

The contraction of isometry tensors depends on the subregion size *l*.

Numerical Analysis: $(1+1)D XY$ model

Partition function and action:

$$
Z = \int \prod_{x=0}^{L_x} \prod_{t=0}^{L_t} \frac{d\theta_{x,t}}{2\pi} e^{-S}
$$

$$
S = -\beta \sum_{x,t} \cos(\theta_{x,t+1} - \theta_{x,t}) - \beta \sum_{x,t} \cos(\theta_{x+1,t} - \theta_{x,t})
$$

β: inverse temperature Spatial lattice size: 1024, temporal lattice size: $2^8 \times 1024$

 \blacksquare XY model exhibits the topological BKT phase transition at $T = T_{\text{BKT}}$, and $0 < T < T_{\text{BKT}}$ is the critical line. $(T_{\text{BKT}} = 0.892943(2)$ [Ueda-Oshikawa, 2021])

Partition function*Z*:

$$
Z = \int \prod_{x=0}^{L_x} \prod_{t=0}^{L_t} \frac{d\theta_{x,t}}{2\pi} e^{-S} = \prod_{\text{lattice}} T_{xx'yy'}
$$

$$
T_{xx'yy'} \equiv \sqrt{e^{(y+y')\mu}} \delta_{x'+y'-x-y} \sqrt{I_{y'}(\beta)} \sqrt{I_{y}(\beta)} \sqrt{I_{x'}(\beta)} \sqrt{I_{x'}(\beta)}
$$

Ix(*β*): modified Bessel function of the first kind, where *x* takes from *−∞* to *∞*. *→* We regularize $I_x(\beta)$ by introducing the cutoff N_{cut} : $-N_{\text{cut}} \leq x \leq N_{\text{cut}}$

Result - subregion size dependence of EE and central charge

- subregion size *l*: $l = 2^p + 2^q \ (q < p)$
- Analytic solution of EE of finite size subregion

$$
S(l,L) = \frac{c}{3} \log \left(\sin \left(\frac{\pi l}{L} \right) \right) + k
$$

■ Central charge *c* by fitting the result to the analytic solution

 $c = 0.998(5)$

 \rightarrow agrees with known result $c = 1$.

Result - temperature dependence of EE

■ On the critical line $T = 0.6, 0.8 < T_{BKT}$

$$
S(l, L) = \frac{c}{3} \log \left(\sin \left(\frac{\pi l}{L} \right) \right) + k
$$

$$
\sim \frac{c}{3} \log l + \text{const.}
$$

- \blacksquare Non-critical $T = 1.0, 1.2 > T_{\text{BKT}}$: *l* dependence for small *l*
	- ∵ finite correlation length.
- We may determine the transition temperature using the EE.

Summary of this talk:

- We studied the subregion size dependence of the entanglement entropy in the $1+1D$ XY model
- We determined the central charge on the critical line $T < T_{\text{BKT}}$ using the subregion size dependence of the EE.
- Difference in the behavior of the EE implies that we can determine the transition temperature using the EE.

Future direction:

- Compute entanglement entropy of a larger subregion size.
- Determine transition temperature.

Method:

- **More efficient TRG algorithm**
	- e.g. HOSRG [Z. Y. Xie, et al., 2012]
- **Parallelization of algorithm**
	- e.g. Parallelized HOTRG [Yamashita-Sakurai, 2021]

Backup - Determining the fitting range

 \blacksquare Compute the EE $S(l'),S(l)$ and obtain the central charge $c(l)$ where $l = 2^p, l' = 2^{p+1}$ or $l = 2^p + 2^q, l' = 2^{p+1} + 2^q$.

$$
c(l) = 3 \frac{S_A(l') - S_A(l)}{\log \sin \frac{l'\pi}{1024} - \log \sin \frac{l\pi}{1024}}
$$

$$
c(1) = 1.041435054
$$

$$
c(2) = 0.997233754, \dots
$$

2 Determine the fitting range as 1 to x , where x is the smallest inetger that satisfies

$$
|c(x) - 1| \ge |c(1) - 1| = 0.041435054.
$$

Backup - Dcut dependence of the EE

Backup - Boundary factor

The boundary factor B is composed of isometries $U^{(n-2)}, U^{(n-3)}, \ldots, U^{(r)}.$ The integer *r* is the largest one that satisfies $a_k \neq b_k$, where

$$
l = \sum_{k=0}^{n-1} a_k 2^k \ (a_k = 0, 1),
$$

$$
l - 1 = \sum_{k=0}^{n-1} b_k 2^k \ (b_k = 0, 1).
$$

For example, letting $L=2^4$ and $l=5$, we have

$$
l = 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0,
$$

\n
$$
l - 1 = 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0,
$$

and $r = 0$.

Backup - Boundary factor

 b_k determines the form of contraction of isometry $U^{(k)}$ and $U^{\text{\tiny T}}(k)$.

The index of $U^{(k)}$ represented by a wavy line is contracted with the index of $U^{(k+1)}$ represented by a solid line or a dotted line.

Backup - Boundary factor

The indices represented by a wavy line are contracted with core matrix. $28 / 28$