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Quantum entanglement

m A correlation between two subregions of quantum many-body systems.

m Entanglement entropy (EE) is a measure of the degree of quantum entanglement.

A

Sa = —Trpalogpa

where p4 is a reduced density matrix of the subregion A and given by p4 = tr 5p.

2/28



Entanglement entropy

m Entanglement entropy has many applications in various fields:

m Particle physics: blackhole entropy, quantum order parameter
m Quantum information: quantum computer, quantum teleportation
m Condensed matter physics: phase structure of metallic condensed matter system
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Entanglement entropy

m Entanglement entropy has many applications in various fields:

m Particle physics: blackhole entropy, quantum order parameter
m Quantum information: quantum computer, quantum teleportation
m Condensed matter physics: phase structure of metallic condensed matter system

—We focus on determining the critical temperature of a (141)D lattice model
using the EE.
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Entanglement entropy and system detail

The subregion size [ dependence of the EE S 4 tells us the detail of the system.
m Entropic c-function C(1), I: length of the subregion A

C (1) monotonically decreases along the RG flow
— detail of the effective degrees of freedom can be extracted.

m The EE on the quantum critical point is given by

S(l) = glogH—k:,

where c is a central charge and k is a constant.
— central charge can be extracted.
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Numerical analysis of entanglement entropy

m Monte Carlo method
m calculates the entropic c-function.

e.g. 4D SU(3) gauge theory [Itou-Nagata-Nakagawa-Nakamura-Zakharov, 2015]
m based on the definition of the EE on lattice
[Aoki-Iritani-Nozaki-Numasawa-Shiba-Tasaki, 2015],
m has sign problem.
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Numerical analysis of entanglement entropy

m Tensor network method (In this talk, we focus on those of Lagrangian formalism)

m has no sign problem.
m directly computes the reduced density matrix and the EE.

e.g. (141)D O(3) non-linear sigma model [Kuramashi-Luo, 2023]
m is limited to the case of half-space subregion A.
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Numerical analysis of entanglement entropy

m Tensor network method (In this talk, we focus on those of Lagrangian formalism)

m has no sign problem.
m directly computes the reduced density matrix and the EE.

e.g. (141)D O(3) non-linear sigma model [Kuramashi-Luo, 2023]
m is limited to the case of half-space subregion A.

We compute the subregion size dependence of the EE with our new method
[Hayazaki-Kadoh-Takeda-GT, work in progress].
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Tensor network (Lagrangian formalism)

m Partition function can be directly computed.

Z = fDd)e_S[(p] = Z ---Tabchefag I
..ab,cde,f.g,..

m We need some " coarse-graining” to reduce the computational cost.

6/28



Tensor Renormalization group (TRG)

m Recursively approximates multiple tensors as one tensor.
e.g. Higher-order TRG (HOTRG) algorithm

D DZ N Dcut

m Various TRG algorithms are proposed:
A-TRG [Adachi-Okubo-Todo, 2019, 2019], Triad-TRG [Kadoh-Nakayama, 2019], etc.
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Tensor network computation of reduced density matrix

Reduced density matrix p4 of the subregion A with spatial size I:

{_ﬂt
VLT

X

l indices

pa=Trgp =

-o—e- : Partial trace over p

‘‘‘‘‘‘

We simplify this network using HOTRG algorithm.
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Tensor network computation of reduced density matrix

Example: total spatial size is 8 and subregion size 3.

Tensor network representation of the reduced density matrix before coarse-graining.
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Tensor network computation of reduced density matrix

After two HOTRG coarse-graining procedures:

1 Y e
R

~~~~~

cyd

—_—

——fm————

At this stage, we can simplify this network further!
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Tensor network computation of reduced density matrix

Tensors U and UT do not contribute to the entanglement entropy.
.,'.

———"

©

Sa =

—trpalog pa = —trU" pyUlog(UTpyU)

—trply log ply
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Tensor network computation of reduced density matrix

Some isometry tensors can be contracted and become an identity matrix.
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Tensor network computation of reduced density matrix

Finally, we obtain the simplified tensor network of the reduced density matrix below:

L L

We established the algorithm to obtain this final result directly.
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Our algorithm

The simplified tensor network of the reduced density matrix consists of two parts: core
matrix C' and boundary factor B.
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Our algorithm

In the following, we set the total spatial size L, = 2", temporal size L; = o - 2".
The core matrix C' consists of coarse-grained tensor 7"~ 1),

TOD .
Comin) = ) Qi 4
2a

T(: original tensor composing p,

> B
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Our algorithm

The boundary factor B consists of isometry tensors U and U®T obtained in the
coarse-graining procedure of tensor 7("—1)
y@m-nt

ym=-3t

The contraction of isometry tensors depends on the subregion size [.
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Numerical Analysis: (1+1)D XY model

m Partition function and action:

th

/Hn%ts

z=01t=0

:—IBZCOS T+l — /BZCOS z+1,t — )

B inverse temperature
Spatial lattice size: 1024, temporal lattice size: 28 x 1024

m XY model exhibits the topological BKT phase transition at 7' = TgkT, and
0 < T < Tgkr is the critical line. (Tgkt = 0.892943(2) [Ueda-Oshikawa, 2021])
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Tensor network for XY model

Partition functionZ:

/ﬁHdQIt = H Twzyy

=0 t=0 lattice
xwyy =ve y+y 51 !yl —x— y\/Iy’(ﬁ)\/Iy(ﬁ)m\/Ix(ﬁ)

I,(5): modified Bessel function of the first kind, where x takes from —oco to co.
— We regularize I,(3) by introducing the cutoff Neyt: —Neut < @ < Newt
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Result - subregion size dependence of EE and central charge

XY model, Dcut=96, Ncut=8, T=0.8929, L=1024 m subregion size [:
2.2 ‘ [ =2P 429 (q<p)

m Analytic solution of EE of finite

size subregion

S@L):gbgem<?>>+k

m Central charge c by fitting the

-
(o]

-
(o))

—
N

result to the analytic solution

Entanglement entropy
o

¢ = 0.998(5)

—_

Analytic solution .
0.8 10 —agrees with known result ¢ = 1.

subregion size
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Result - temperature dependence of EE

Dcut=64, Ncut=8, L=1024 m On the critical line
8 T=0.6 + ‘ T=0.6,08<Tpkr
T=0.8 * L
25rT=1.0 = . ;x < S(.1) ¢, 7l L
T=1.2 o =—log [ sin | — +
g ) et N )88x ? 3 g L
E 4+t xxxx ¢
*qg) L e mmn ~§logl + const.
+ x E
215 U ST
o x x * m Non-critical T'= 1.0, > TBKT:
(o)) *
8 1f * [ dependence for small [
0 *.* finite correlation length.
0.5 m We may determine the transition
0 ‘ temperature using the EE.
1 10 100

subregion size
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Conclusion and discusson

Summary of this talk:
m We studied the subregion size dependence of the entanglement entropy in the
141D XY model.

m We determined the central charge on the critical line T' < TgkT using the
subregion size dependence of the EE.

m Difference in the behavior of the EE implies that we can determine the transition

temperature using the EE.
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Conclusion and discusson

Future direction:
m Compute entanglement entropy of a larger subregion size.
m Determine transition temperature.

Method:

m More efficient TRG algorithm
e.g. HOSRG [Z. Y. Xie, et al., 2012]

m Parallelization of algorithm
e.g. Parallelized HOTRG [Yamashita-Sakurai, 2021]
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Backup - Determining the fitting range

Compute the EE S(I'), S(I) and obtain the central charge ¢(1) where
l=2P 1" =2Pt or [ = 2P 4 291" = 2PF1 4 24,

Sa(l') —Sa(l)
U'm lm

log sin 7557 — log sin 1557
c(1) =1.041435054

c(2) =0.997233754, . ..

c(l) =3

Determine the fitting range as 1 to x, where x is the smallest inetger that satisfies

le(z) — 1| > |e(1) — 1] = 0.041435054.
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Backup - Dcut dependence of the EE

XY model, Ncut=8, aspect ratio 28, T=0.8929, L=1024
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Backup - Boundary factor

The boundary factor B is composed of isometries U2 y®=3) ).
The integer r is the largest one that satisfies aj # by, where

n—1
1= ap2" (ar = 0,1),
k=0

n—1
[=1=>) 52" (b =0,1).
k=0

For example, letting L = 2% and | = 5, we have
1=0-224+1-2240-2"+1.2°
1—1=0-22+1-2240-2'40-2°

and r = 0.
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Backup - Boundary factor

by, determines the form of contraction of isometry U*) and U,

y ot y T
'\/\/_ I SNG e
X -

The index of U®) represented by a wavy line is contracted with the index of U*+1)
represented by a solid line or a dotted line.
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Backup - Boundary factor

Example: Total spacial size 16, and subregion size 5.
—by=1,b1 =0,bg =0 and r = 0.

The indices represented by a wavy line are contracted with core matrix. 2526



