Numerical analysis of entanglement entropy using tensor network

Gota Tanaka¹

$\label{eq:constant} \begin{array}{c} \mbox{in collaboration with} \\ \mbox{Tanahiro Hayazaki}^2 & \mbox{Daisuke Kadoh}^1 & \mbox{Shinji Takeda}^2 \end{array}$

¹Meiji Gakuin U. ²Kanazawa U.

November 16, 2024, Tensor Network 24

- A correlation between two subregions of quantum many-body systems.
- Entanglement entropy (EE) is a measure of the degree of quantum entanglement.

$$S_A = -\mathrm{Tr}\rho_A \log \rho_A$$

where ρ_A is a reduced density matrix of the subregion A and given by $\rho_A = tr_{\bar{A}}\rho$.

Entanglement entropy

- Entanglement entropy has many applications in various fields:
 - Particle physics: blackhole entropy, quantum order parameter
 - Quantum information: quantum computer, quantum teleportation
 - Condensed matter physics: phase structure of metallic condensed matter system

- Entanglement entropy has many applications in various fields:
 - Particle physics: blackhole entropy, quantum order parameter
 - Quantum information: quantum computer, quantum teleportation
 - Condensed matter physics: phase structure of metallic condensed matter system

 $\rightarrow \mbox{We}$ focus on determining the critical temperature of a (1+1)D lattice model using the EE.

Entanglement entropy and system detail

The subregion size l dependence of the EE S_A tells us the detail of the system.

• Entropic c-function C(l), l: length of the subregion A

$$C(l) = \frac{l}{2} \frac{\partial S_A}{\partial l}$$

 $C(l) \text{ monotonically decreases along the RG flow} \rightarrow \underline{\text{detail of the effective degrees of freedom can be extracted}}.$

The EE on the quantum critical point is given by

$$S(l) = \frac{c}{3}\log l + k,$$

where c is a central charge and k is a constant.

 \rightarrow central charge can be extracted.

Numerical analysis of entanglement entropy

Monte Carlo method

- calculates the entropic *c*-function.
 - e.g. 4D SU(3) gauge theory [Itou-Nagata-Nakagawa-Nakamura-Zakharov, 2015]
- based on the definition of the EE on lattice [Aoki-Iritani-Nozaki-Numasawa-Shiba-Tasaki, 2015].
- has sign problem.

Numerical analysis of entanglement entropy

- Tensor network method (In this talk, we focus on those of Lagrangian formalism)
 - has no sign problem.
 - directly computes the reduced density matrix and the EE.
 e.g. (1+1)D O(3) non-linear sigma model [Kuramashi-Luo, 2023]
 - is limited to the case of half-space subregion A.

Numerical analysis of entanglement entropy

- Tensor network method (In this talk, we focus on those of Lagrangian formalism)
 - has no sign problem.
 - directly computes the reduced density matrix and the EE.
 e.g. (1+1)D O(3) non-linear sigma model [Kuramashi-Luo, 2023]
 - is limited to the case of half-space subregion A.

We compute the subregion size dependence of the EE with our new method [Hayazaki-Kadoh-Takeda-GT, work in progress].

Tensor network (Lagrangian formalism)

Partition function can be directly computed.

• We need some "coarse-graining" to reduce the computational cost.

Tensor Renormalization group (TRG)

Recursively approximates multiple tensors as one tensor.
 e.g. Higher-order TRG (HOTRG) algorithm

• Various TRG algorithms are proposed:

A-TRG [Adachi-Okubo-Todo, 2019, 2019], Triad-TRG [Kadoh-Nakayama, 2019], etc.

Reduced density matrix ρ_A of the subregion A with spatial size *l*:

We simplify this network using HOTRG algorithm.

Example: total spatial size is 8 and subregion size 3.

Tensor network representation of the reduced density matrix before coarse-graining.

After one HOTRG coarse-graining procedure:

After two HOTRG coarse-graining procedures:

At this stage, we can simplify this network further!

Tensors U and U^{\dagger} do not contribute to the entanglement entropy.

 $S_A = -\mathrm{tr}\rho_A \log \rho_A = -\mathrm{tr}U^{\dagger}\rho_A' U \log(U^{\dagger}\rho_A' U) = -\mathrm{tr}\rho_A' \log \rho_A'$

Some isometry tensors can be contracted and become an identity matrix.

Finally, we obtain the simplified tensor network of the reduced density matrix below:

We established the algorithm to obtain this final result directly.

Our algorithm

The simplified tensor network of the reduced density matrix consists of two parts: core matrix C and boundary factor B.

Our algorithm

In the following, we set the total spatial size $L_x = 2^n$, temporal size $L_t = \alpha \cdot 2^n$. The core matrix C consists of coarse-grained tensor $T^{(n-1)}$.

Our algorithm

The boundary factor B consists of isometry tensors $U^{(i)}$ and $U^{(i)\dagger}$ obtained in the coarse-graining procedure of tensor $T^{(n-1)}$

The contraction of isometry tensors depends on the subregion size l.

Numerical Analysis: (1+1)D XY model

Partition function and action:

$$Z = \int \prod_{x=0}^{L_x} \prod_{t=0}^{L_t} \frac{d\theta_{x,t}}{2\pi} e^{-S}$$
$$S = -\beta \sum_{x,t} \cos(\theta_{x,t+1} - \theta_{x,t}) - \beta \sum_{x,t} \cos(\theta_{x+1,t} - \theta_{x,t})$$

 $\beta:$ inverse temperature Spatial lattice size: 1024, temporal lattice size: $2^8\times 1024$

• XY model exhibits the topological BKT phase transition at $T = T_{BKT}$, and $0 < T < T_{BKT}$ is the critical line. ($T_{BKT} = 0.892943(2)$ [Ueda-Oshikawa, 2021])

Partition function Z:

$$Z = \int \prod_{x=0}^{L_x} \prod_{t=0}^{L_t} \frac{d\theta_{x,t}}{2\pi} e^{-S} = \prod_{\text{lattice}} T_{xx'yy'}$$
$$T_{xx'yy'} \equiv \sqrt{e^{(y+y')\mu}} \delta_{x'+y'-x-y} \sqrt{I_{y'}(\beta)} \sqrt{I_{y}(\beta)} \sqrt{I_{x'}(\beta)} \sqrt{I_{x'}(\beta)}$$

 $I_x(\beta)$: modified Bessel function of the first kind, where x takes from $-\infty$ to ∞ . \rightarrow We regularize $I_x(\beta)$ by introducing the cutoff N_{cut} : $-N_{\text{cut}} \leq x \leq N_{\text{cut}}$

Result - subregion size dependence of EE and central charge

- subregion size l: $l = 2^p + 2^q (q < p)$ • Apply the colution of EE
- Analytic solution of EE of finite size subregion

$$S(l,L) = \frac{c}{3} \log\left(\sin\left(\frac{\pi l}{L}\right)\right) + k$$

• Central charge *c* by fitting the result to the analytic solution

c = 0.998(5)

 \rightarrow agrees with known result c = 1.

Result - temperature dependence of EE

• On the critical line $T = 0.6, 0.8 < T_{BKT}$

$$\begin{split} S(l,L) = & \frac{c}{3} \log \left(\sin \left(\frac{\pi l}{L} \right) \right) + k \\ & \sim & \frac{c}{3} \log l + \text{const.} \end{split}$$

- Non-critical T = 1.0, 1.2 > T_{BKT}:
 l dependence for small *l*
 - \therefore finite correlation length.
- We may determine the transition temperature using the EE.

Summary of this talk:

- We studied the subregion size dependence of the entanglement entropy in the 1+1D XY model.
- We determined the central charge on the critical line $T < T_{BKT}$ using the subregion size dependence of the EE.
- Difference in the behavior of the EE implies that we can determine the transition temperature using the EE.

Future direction:

- Compute entanglement entropy of a larger subregion size.
- Determine transition temperature.

Method:

- More efficient TRG algorithm
 e.g. HOSRG [Z. Y. Xie, et al., 2012]
- Parallelization of algorithm

e.g. Parallelized HOTRG [Yamashita-Sakurai, 2021]

Backup - Determining the fitting range

1 Compute the EE S(l'), S(l) and obtain the central charge c(l) where $l = 2^p, l' = 2^{p+1}$ or $l = 2^p + 2^q, l' = 2^{p+1} + 2^q$.

$$c(l) = 3 \frac{S_A(l') - S_A(l)}{\log \sin \frac{l'\pi}{1024} - \log \sin \frac{l\pi}{1024}}$$

$$c(1) = 1.041435054$$

$$c(2) = 0.997233754, \dots$$

2 Determine the fitting range as 1 to x, where x is the smallest inetger that satisfies

$$|c(x) - 1| \ge |c(1) - 1| = 0.041435054.$$

Backup - Dcut dependence of the EE

Backup - Boundary factor

The boundary factor B is composed of isometries $U^{(n-2)}, U^{(n-3)}, \ldots, U^{(r)}$. The integer r is the largest one that satisfies $a_k \neq b_k$, where

$$l = \sum_{k=0}^{n-1} a_k 2^k \ (a_k = 0, 1),$$
$$l - 1 = \sum_{k=0}^{n-1} b_k 2^k \ (b_k = 0, 1).$$

For example, letting $L = 2^4$ and l = 5, we have

$$l = 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0,$$

$$l - 1 = 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0,$$

and r = 0.

Backup - Boundary factor

 b_k determines the form of contraction of isometry $U^{(k)}$ and $U^{\dagger(k)}$.

The index of $U^{(k)}$ represented by a wavy line is contracted with the index of $U^{(k+1)}$ represented by a solid line or a dotted line.

Backup - Boundary factor

The indices represented by a wavy line are contracted with core matrix.