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Outline

• Introduction

• Tensor network – Ground state search

• Tensor network – Excited state ansatz
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- Two dimensions (PRX Quantum 5, 010335 (2024))
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Quantum many-body physics

How to probe the low-energy states 
with some appropriate tools?

More is different

…and difficult
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Tensor network algorithm

MPS

PEPS

Tree TN

≈

• Size of Hilbert space: 𝑑!(𝑑 represents the 
number of possible local states)

• The question further reduces to representing
in an efficient way

R. Orus, Nature Review Physics 1, 538 (2019)
How to “train” the tensors?
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Tensor network algorithm

Courtesy of Prof. Ji-Yao Chen
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Ground state search – variational 
optimization

• Disadvantage: large error

H.-J. Liao, J.-G. Liu, L. Wang, and T. Xiang, Physical Review X 9, 031041 (2019) 

Target: minimize the energy 

Get gradients

Variational principle:

Central question:
How to obtain the gradients of a complex 
multi-variable function efficiently?

Option 1: finite difference

Option 2: systematic summation

Frequently used for ML. A (numerically) 
exact gradient can be well approximated 
through the so-called back propagation!!

• Iteratively solving the eigenvalue 
problem for the lowest energy

• Disadvantage: complexity due to 
a summation of many different 
copies of tensor graph

Option 3: automatic differentiation
P. Corboz, Physical Review B 94, 035133 (2016)
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Update the tensors – variational 
optimization

WLT, E.-G. Moon, K.-W. Lee, W. E. Pickett, and H.-Y. Lee, 
Commun. Phys. 5, 130 (2022) 

For 2D iPEPS: • The left plot shows the computational 
graph of one iteration for iPEPS.

• After each iteration, the gradient can 
be evaluated through AD.
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• After N iterations a well approximated 
ground-state ansatz can be constructed. 
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Our previous results

Physical Review B 107, 224406 (2023) Physical Review Research 
6, 023297 (2024)

Communications Physics 5, 130 (2022)Journal of Physics: Condensed Matter 
32, 455401 (2020)
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Tensor network algorithm

Courtesy of Prof. Ji-Yao Chen

How?
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Excitation ansatz: MPS

Physical Review B 85, 035130 (2012)
Physical Review Letters 112, 257202 (2014)
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TN summation using generating 
function

WLT, H.-K. Wu, N. Schuch, N. Kawashima, and J.-Y. Chen, 
Physical Review B 103, 205155 (2021).

Generating function (GF):
• In field theory, this function is often constructed and by taking the derivative, 

one can obtain the target values.
• Here, we are going to borrow the same idea and apply it for the tensor 

network ansatz.

One-particle excitation:

Static structural factor:

𝑆),+ 𝑘 =,
,-#

.

𝑒/𝒌1(𝒓!4𝒓") .𝑂#) .𝑂,
+

Taking 1D system as an example
(with translational symmetry):

𝑀𝑃𝑆, λ = 𝐴 + λ𝑒4/67"𝐵

.𝑂,
+ λ = 𝐼 + λ𝑒4/67" .𝑂+

Corresponding GFs:
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1D critical Ising chain

• With generating functions, now we only need to calculate one or a few tensor 
graphs.

• Moreover, the derivatives can be evaluated using automatic differentiation 
(AD), which is often utilized in neural networks. 

• (a) low-energy spectrum by us and 
from exact diagonalization (ED).

• (b) spectrum weight (dynamical 
structural factor) with different bond 
dimension and ED

𝑆! 𝑘, 𝜔 =&
"
𝑀#
! $𝛿 𝜔 − 𝐸"# + 𝐸% ,

𝑀#
! = Φ#(𝐵")|𝑆#!|ψ(𝐴) ,

𝑆#! =
1
𝑁
&

&'(

)
𝑒*#+! 𝑆&!

WLT, H.-K. Wu, N. Schuch, N. Kawashima, and J.-Y. Chen, 
Physical Review B 103, 205155 (2021).
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1D spin-1 Heisenberg chain

L=16: L=60:

• Good benchmark accordance in 
smaller size with ED.

• Energy spectrum and dynamical 
structural factor can be obtained 
for larger system size.

• Haldane gap≈0.4105WLT, H.-K. Wu, N. Schuch, N. Kawashima, and J.-Y. Chen, 
Physical Review B 103, 205155 (2021).
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One-particle Bloch state in 2D

Goal: To find the corresponding 
impurity tensor so that the energy 
gives the lowest excited ones, 
second lowest excited ones, etc.

By solving                           , 
we can obtain a series of 
impurity tensors with 
corresponding energies.

=

6𝐻"

== =

=
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Generating function for iPEPS

WLT, L. Vanderstraeten, N. Schuch, H.-Y. Lee, N. Kawashima, 
and J.-Y. Chen, PRX Quantum 5, 010335 (2024)
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Tensor compression

• In order to compress 𝐺! and 𝐺", we 
insert the projectors.

• To include the projectors in both 
vertical and horizontal directions, we 
take the average.

Vertical compression for 4x4 bulk tensor:

WLT, L. Vanderstraeten, N. Schuch, H.-Y. Lee, N. Kawashima, 
and J.-Y. Chen, PRX Quantum 5, 010335 (2024)
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2D transverse-field Ising model

Dispersion (lowest excited state):

Energy gap:

• The energy dispersion looks well compared 
with previous results (cf. Phys. Rev. B 101, 
195109 (2020))

• The energy gap to transverse field function 
scales in accordance with the exponent of 3D 
Ising Universality class.

WLT, L. Vanderstraeten, N. Schuch, H.-Y. Lee, N. Kawashima, 
and J.-Y. Chen, PRX Quantum 5, 010335 (2024)
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2D Heisenberg model

Dispersion (lowest excited state):

• Again, the dispersion of lowest excited energy 
benchmarks well (cf. Phys. Rev. B 98, 100405(R) 
(2018)). 

• Also, the gap scales to zero along with the inverse 
of bond dimension D, revealing the gapless nature 
of Heisenberg model.

WLT, L. Vanderstraeten, N. Schuch, H.-Y. Lee, N. Kawashima, 
and J.-Y. Chen, PRX Quantum 5, 010335 (2024)
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𝐽! − 𝐽" model

Dispersion (lowest excited state):

• The lowest excited states shares similar shape compared to VMC results (cf. 
Phys. Rev. B 98, 100405(R) (2018)).

WLT, L. Vanderstraeten, N. Schuch, H.-Y. Lee, N. Kawashima, 
and J.-Y. Chen, PRX Quantum 5, 010335 (2024)
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𝐽! − 𝐽" model
Dynamical structure factor:

• From the DSF we can see that the energy gap at M 
point gets softened and gradually becomes gapless.

• Also, spectral weights gather closer to the magnon 
branch, which might indicate a potential energy 
continuum.

• However, the computation with next nearest neighbor 
coupling is heavy…

WLT, L. Vanderstraeten, N. Schuch, H.-Y. Lee, N. Kawashima, 
and J.-Y. Chen, PRX Quantum 5, 010335 (2024)
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Future directions

• With the information of excited states, we can use them 
to construct the Gibbs state to probe the properties in 
the finite temperature.

• Unlike the purification, the information of low-energy 
excited states are believed to be better captured, leading 
to a potentially higher accuracy in the low temperature.

Y. Cui et al., Phys. Rev. Lett. 123, 067203 (2019)

• Moreover, understanding the entanglement properties of 
many-body state has become very important.

• The tensor network construction for the excited states 
can be used to probe related properties.

• In sum, with the well constructed excited state ansatz, 
there are many potential usages.Y. Zou et al., Phys. Rev. Lett. 126, 120501 (2021)
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Summary

• Tensor network algorithm is a powerful tool in representing 
the many-body wavefunctions.

• Combining the concept of generating function the excitation 
ansatz for 1D periodic MPS can be well designed.

• Extension to 2D, despite demanding more techniques, is also 
possible and applicable.

• Studying more challenging issues, such as probing the finite 
temperature, is expected as one of the future goals.

weilintu@keio.jp


