

Generating Functions for Projected Entangled-Pair States

Wei-Lin Tu

Graduate School of Science and Technology, Keio University

Physical Review B **103**, 205155 (2021) *PRX Quantum* **5**, 010335 (2024)

2024/11/16 Tensor Network 24 @Shiinoki Cultural Complex, Kanazawa

Collaborators

ISSP, UTokyo

Prof. Naoki Kawashima Univ. of Vienna

Prof. Norbert Schuch

Korea Univ.

Prof. Hyun-Yong Lee

Univ. of Ghent

Dr. Laurens Vanderstraeten

TENSOR NETWORK 2024

Sun Yat-sen Univ.

Prof. Ji-Yao Chen

Univ. of Maryland

Dr. Huan-Kuang Wu

Outline

- Introduction
- Tensor network Ground state search
 - Variational optimization
 - Some results
- Tensor network Excited state ansatz
 - One dimension (*Physical Review B* **103**, 205155 (2021))
 - Two dimensions (PRX Quantum 5, 010335 (2024))
- Summary

Quantum many-body physics

TENSOR NETWORK 2024

Skyrmions emerge from the collective behavior of scores of electrons, but they behave as individual particles. Maciej Rebisz for Quanta Magazine

How to probe the low-energy states with some appropriate tools?

...and difficult

Tensor network algorithm

TENSOR NETWORK 2024

R. Orus, Nature Review Physics 1, 538 (2019)

How to "train" the tensors?

- Ground state optimization and characterization
 - MPS

optimization: DMRG, infinite DMRG, TEBD, VUMPS, etc.

characterization: entanglement spectrum, fundamental theorem, etc.

• PEPS

optimization: simple update, (fast) full update, gradient optimization, AD, etc. characterization: ES, gauge symmetry, finite entanglement scaling, etc.

- Tensor networks describe ground states well
 - Symmetry breaking ordered phase
 - Non-chiral topological ordered phase
 - Quantum critical point
 - Gapless spin liquid
 - Chiral spin liquid
- Many experimentally accessible observables are excitations
 - · Spin excitation: neutron scattering
 - Spin-dimer excitation: Raman scattering, RIXS
 - Fermion excitation: ARPES
- One way to bridge tensor networks to real experiments: excited state

Courtesy of Prof. Ji-Yao Chen

S. R. White, PRL 69, 2863 (1992); I. P. McCulloch, arXiv: 0804.2509 (2008); F. Verstraete and J. I. Cirac, arXiv: 0407066 (2004);
H. C. Jiang, Z. Y. Weng, and T. Xiang, PRL (2008); H. N. Phien, J. A. Bengua, et al. PRB (2015);
L. Vanderstraeten, et al. PRB (2016); P. Corboz, PRB (2016); H.-J. Liao, J.-G. Liu, L. Wang, and T. Xiang, PRX (2019);
J. I. Cirac, D. Poilblanc, N. Schuch, and F. Verstraete, PRB (2011); R. Chi, Y. Liu, Y. Wan, H.-J. Liao, and T. Xiang, PRL (2022)

Ground state search – variational optimization

TENSOR NETWORK 2024

Variational principle:

Target: minimize the energy $\langle \psi | H | \psi \rangle$

Get gradients $\partial_a \langle \psi | H | \psi \rangle$

Central question:

How to obtain the gradients of a complex multi-variable function efficiently?

Option 1: finite difference

$$(\mathbf{g}_0)_i \approx \frac{E(\mathbf{x}_0 + h\mathbf{e}_i) - E(\mathbf{x}_0)}{h}$$

• Disadvantage: large error

Option 2: systematic summation

- Iteratively solving the eigenvalue problem for the lowest energy
- Disadvantage: complexity due to a summation of many different copies of tensor graph

P. Corboz, *Physical Review B* **94**, 035133 (2016)

Option 3: automatic differentiation

H.-J. Liao, J.-G. Liu, L. Wang, and T. Xiang, *Physical Review X* 9, 031041 (2019)

Frequently used for ML. A (numerically) exact gradient can be well approximated through the so-called back propagation!!

Update the tensors – variational optimization

For 2D iPEPS:

WLT, E.-G. Moon, K.-W. Lee, W. E. Pickett, and H.-Y. Lee, *Commun. Phys.* **5**, 130 (2022)

TENSOR NETWORK 2024

- The left plot shows the computational graph of one iteration for iPEPS.
- After each iteration, the gradient can be evaluated through AD.

$$(\frac{\partial E_{GS}}{\partial a_{1}}, \frac{\partial E_{GS}}{\partial a_{2}}, \frac{\partial E_{GS}}{\partial a_{3}}, \frac{\partial E_{GS}}{\partial a_{4}}) \rightarrow (a'_{1}, a'_{2}, a'_{3}, a'_{4})$$

• After *N* iterations a well approximated ground-state ansatz can be constructed.

$$(a'_{1}, a'_{2}, a'_{3}, a'_{4})$$

 \vdots $\} N \text{ steps}$
 $(a^{f}_{1}, a^{f}_{2}, a^{f}_{3}, a^{f}_{4})$

Our previous results

- Ground state optimization and characterization
 - MPS

optimization: DMRG, infinite DMRG, TEBD, VUMPS, etc.

characterization: entanglement spectrum, fundamental theorem, etc.

• PEPS

optimization: simple update, (fast) full update, gradient optimization, AD, etc. characterization: ES, gauge symmetry, finite entanglement scaling, etc.

- Tensor networks describe ground states well
 - Symmetry breaking ordered phase
 - Non-chiral topological ordered phase
 - · Quantum critical point
 - Gapless spin liquid
 - Chiral spin liquid
- Many experimentally accessible observables are excitations
 - · Spin excitation: neutron scattering
 - Spin-dimer excitation: Raman scattering, RIXS
 - Fermion excitation: ARPES
- One way to bridge tensor networks to real experiments: excited state

S. R. White, PRL 69, 2863 (1992); I. P. McCulloch, arXiv: 0804.2509 (2008); F. Verstraete and J. I. Cirac, arXiv: 0407066 (2004); H. C. Jiang, Z. Y. Weng, and T. Xiang, PRL (2008); H. N. Phien, J. A. Bengua, et al. PRB (2015); L. Vanderstraeten, et al. PRB (2016); P. Corboz, PRB (2016); H.-J. Liao, J.-G. Liu, L. Wang, and T. Xiang, PRX (2019); J. I. Cirac, D. Poilblanc, N. Schuch, and F. Verstraete, PRB (2011); R. Chi, Y. Liu, Y. Wan, H.-J. Liao, and T. Xiang, PRL (2022)

Excitation ansatz: MPS

TENSOR NETWORK 2024

Physical Review Letters **112**, 257202 (2014)

- One-particle excitation ansatz
 - Assume ground state can be approximated by a uniform MPS:

$$|\Psi(A)\rangle = \underbrace{A}_{s_1} \underbrace{A}_{s_2} \underbrace{A}_{s_3} \underbrace{A}_{s_1} \underbrace{A}_{s_{N-1}} \underbrace{A}_{s_N} \widehat{T} |\Psi(A)\rangle = |\Psi(A)\rangle$$

• One-particle excited state takes the form (single mode approximation):

$$\begin{split} |\Phi_{k}(B)\rangle &= \sum_{j=0}^{N-1} e^{-ikj}\hat{T}^{j} \underbrace{B}_{s_{1}} \underbrace{A}_{s_{2}} \underbrace{A}_{s_{3}} \cdots \underbrace{A}_{N-1} \underbrace{A}_{s_{N}} \\ &= \underbrace{B}_{s_{1}} \underbrace{A}_{s_{2}} \underbrace{A}_{s_{3}} \cdots \underbrace{A}_{s_{N-1}} \underbrace{A}_{s_{N}} \\ &= \underbrace{B}_{s_{1}} \underbrace{A}_{s_{2}} \underbrace{A}_{s_{3}} \cdots \underbrace{A}_{s_{N-1}} \underbrace{A}_{s_{N}} \\ &+ e^{-i2k} \underbrace{A}_{s_{1}} \underbrace{A}_{s_{2}} \underbrace{B}_{s_{3}} \cdots \underbrace{A}_{s_{N-1}} \underbrace{A}_{s_{N}} \\ &+ e^{-i2k} \underbrace{A}_{s_{1}} \underbrace{B}_{s_{2}} \cdots \underbrace{A}_{s_{N-1}} \underbrace{A}_{s_{N}} \\ &+ e^{-i(N-1)k} \underbrace{A}_{s_{1}} \underbrace{A}_{s_{2}} \underbrace{A}_{s_{3}} \cdots \underbrace{A}_{s_{N-1}} \underbrace{B}_{s_{N}} \\ &+ e^{-i(N-1)k} \underbrace{A}_{s_{1}} \underbrace{A}_{s_{2}} \underbrace{A}_{s_{3}} \cdots \underbrace{A}_{s_{N-1}} \underbrace{A}_{s_{N}} \\ &+ e^{-i(N-1)k} \underbrace{A}_{s_{1}} \underbrace{A}_{s_{2}} \underbrace{A}_{s_{3}} \cdots \underbrace{A}_{s_{N-1}} \underbrace{A}_{s_{N}} \\ &+ e^{-i(N-1)k} \underbrace{A}_{s_{1}} \underbrace{A}_{s_{2}} \underbrace{A}_{s_{3}} \cdots \underbrace{A}_{s_{N-1}} \underbrace{A}_{s_{N}} \\ &+ e^{-i(N-1)k} \underbrace{A}_{s_{1}} \underbrace{A}_{s_{2}} \underbrace{A}_{s_{3}} \cdots \underbrace{A}_{s_{N-1}} \underbrace{A}_{s_{N}} \\ &+ e^{-i(N-1)k} \underbrace{A}_{s_{1}} \underbrace{A}_{s_{2}} \underbrace{A}_{s_{3}} \cdots \underbrace{A}_{s_{N-1}} \underbrace{A}_{s_{N}} \\ &+ e^{-i(N-1)k} \underbrace{A}_{s_{1}} \underbrace{A}_{s_{2}} \underbrace{A}_{s_{3}} \cdots \underbrace{A}_{s_{N-1}} \underbrace{A}_{s_{N}} \\ &+ e^{-i(N-1)k} \underbrace{A}_{s_{1}} \underbrace{A}_{s_{2}} \underbrace{A}_{s_{3}} \cdots \underbrace{A}_{s_{N-1}} \underbrace{A}_{s_{N}} \\ &+ e^{-i(N-1)k} \underbrace{A}_{s_{1}} \underbrace{A}_{s_{2}} \underbrace{A}_{s_{3}} \cdots \underbrace{A}_{s_{N-1}} \underbrace{A}_{s_{N}} \\ &+ e^{-i(N-1)k} \underbrace{A}_{s_{1}} \underbrace{A}_{s_{2}} \underbrace{A}_{s_{3}} \cdots \underbrace{A}_{s_{N-1}} \underbrace{A}_{s_{N}} \\ &+ e^{-i(N-1)k} \underbrace{A}_{s_{N}} \underbrace{A}_{s_{N}} \cdots \underbrace{A}_{s_{N-1}} \underbrace{A}_{s_{N}} \\ &+ e^{-i(N-1)k} \underbrace{A}_{s_{N}} \underbrace{A}_{s_{N}} \cdots \underbrace{A}_{s_{N}} \cdots \underbrace{A}_{s_{N}} \underbrace{A}_{s_{N}} \cdots \underbrace{A}_{s_{N}} \underbrace{A}_{s_{N}} \cdots \underbrace{A}_{s_{N}} \underbrace{A}_{s_{N}} \cdots \underbrace{A}_{s_{N}$$

• Two-particle excitation ansatz

$$|\Phi_{k}(B_{1},B_{2})\rangle = \sum_{j=0}^{N-1} e^{-ikj} \hat{T}^{j} \left(c_{1} \underbrace{B_{1}}_{s_{1}} \underbrace{B_{2}}_{s_{2}} \underbrace{A_{1}}_{s_{3}} \cdots \underbrace{A_{n}}_{s_{N-1}} + c_{2} \underbrace{B_{1}}_{s_{1}} \underbrace{A_{2}}_{s_{2}} \underbrace{B_{2}}_{s_{3}} \cdots \underbrace{A_{n}}_{s_{N-1}} \underbrace{A_{n}}_{s_{N}} + \cdots \right) + c_{N-1} \underbrace{B_{1}}_{s_{1}} \underbrace{A_{2}}_{s_{2}} \underbrace{A_{3}}_{s_{3}} \cdots \underbrace{A_{n}}_{s_{N-1}} \underbrace{B_{2}}_{s_{N}} \right)$$

$$Physical Review B 85, 035130 (2012)$$

TN summation using generating function

Generating function (GF):

• In field theory, this function is often constructed and by taking the derivative, one can obtain the target values.

TENSOR NETWORK 2

• Here, we are going to borrow the same idea and apply it for the tensor network ansatz.

Taking 1D system as an example (with translational symmetry):

Corresponding GFs:

WLT, H.-K. Wu, N. Schuch, N. Kawashima, and J.-Y. Chen, *Physical Review B* 103, 205155 (2021).

1D critical Ising chain

- With generating functions, now we only need to calculate one or a few tensor graphs.
- Moreover, the derivatives can be evaluated using automatic differentiation (AD), which is often utilized in neural networks.

WLT, H.-K. Wu, N. Schuch, N. Kawashima, and J.-Y. Chen, *Physical Review B* 103, 205155 (2021).

$$S^{\alpha}(k,\omega) = \sum_{n} |M_{k}^{\alpha}|^{2} \delta(\omega - E_{n}^{k} + E_{0}),$$

$$M_{k}^{\alpha} = \langle \Phi_{k}(B_{n}) | S_{k}^{\alpha} | \psi(A) \rangle,$$

$$S_{k}^{\alpha} = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} e^{ikr_{j}} S_{j}^{\alpha}$$

- (a) low-energy spectrum by us and from exact diagonalization (ED).
- (b) spectrum weight (dynamical structural factor) with different bond dimension and ED

1D spin-1 Heisenberg chain

TENSOR NETWORK 2024

WLT, H.-K. Wu, N. Schuch, N. Kawashima, and J.-Y. Chen, *Physical Review B* 103, 205155 (2021).

L=60:

- Good benchmark accordance in smaller size with ED.
- Energy spectrum and dynamical structural factor can be obtained for larger system size.
- Haldane gap≈0.4105

One-particle Bloch state in 2D

TENSOR NETWORK 2024

Goal: To find the corresponding impurity tensor so that the energy gives the lowest excited ones, second lowest excited ones, etc.

By solving $\mathbf{H}_{\mu\nu}\mathbf{B}^{\nu} = E\mathbf{N}_{\mu\nu}\mathbf{B}^{\nu}$, we can obtain a series of impurity tensors with corresponding energies.

Generating function for iPEPS

WLT, L. Vanderstraeten, N. Schuch, H.-Y. Lee, N. Kawashima, and J.-Y. Chen, *PRX Quantum* 5, 010335 (2024)

Tensor compression

TENSOR NETWORK 2024

- In order to compress G_N and G_H , we insert the projectors.
- To include the projectors in both vertical and horizontal directions, we take the average.

Vertical compression for 4x4 bulk tensor:

WLT, L. Vanderstraeten, N. Schuch, H.-Y. Lee, N. Kawashima, and J.-Y. Chen, *PRX Quantum* 5, 010335 (2024)

2D transverse-field Ising model

TENSOR NETWORK 2024

Dispersion (lowest excited state):

- The energy dispersion looks well compared with previous results (cf. Phys. Rev. B 101, 195109 (2020))
- The energy gap to transverse field function • scales in accordance with the exponent of 3D Ising Universality class.

WLT, L. Vanderstraeten, N. Schuch, H.-Y. Lee, N. Kawashima, and J.-Y. Chen, PRX Quantum 5, 010335 (2024)

2D Heisenberg model

TENSOR NETWORK 2024

$$\mathbf{H} = J \sum_{\langle i,j \rangle} S_i^z S_j^z + \lambda \left(S_i^x S_j^x + S_i^y S_j^y \right)$$

with J = 1 and $\lambda = 1$

- Again, the dispersion of lowest excited energy benchmarks well (cf. *Phys. Rev. B* **98**, 100405(R) (2018)).
- Also, the gap scales to zero along with the inverse of bond dimension *D*, revealing the gapless nature of Heisenberg model.

WLT, L. Vanderstraeten, N. Schuch, H.-Y. Lee, N. Kawashima, 19 and J.-Y. Chen, *PRX Quantum* 5, 010335 (2024)

Dispersion (lowest excited state):

$$J_1 - J_2$$
 model

TENSOR NETWORK 2024

• The lowest excited states shares similar shape compared to VMC results (cf. *Phys. Rev. B* **98**, 100405(R) (2018)).

$$J_1 - J_2 \mod$$

TENSOR NETWORK 2024

Dynamical structure factor:

- From the DSF we can see that the energy gap at M point gets softened and gradually becomes gapless.
- Also, spectral weights gather closer to the magnon branch, which might indicate a potential energy continuum.
- However, the computation with next nearest neighbor coupling is heavy...

Future directions

- With the information of excited states, we can use them to construct the Gibbs state to probe the properties in the finite temperature.
- Unlike the purification, the information of low-energy excited states are believed to be better captured, leading to a potentially higher accuracy in the low temperature.

$$\mathcal{H} = \sum_{i=1}^{N} J(\Delta S_i^z S_{i+1}^z + S_i^x S_{i+1}^x + S_i^y S_{i+1}^y) - B(S_i^x + B_y(-1)^i S_i^y)$$

Y. Zou et al., Phys. Rev. Lett. 126, 120501 (2021)

- Moreover, understanding the entanglement properties of many-body state has become very important.
- The tensor network construction for the excited states can be used to probe related properties.
- In sum, with the well constructed excited state ansatz, there are many potential usages.

Summary

- **TENSOR NETWORK 2024**
- Tensor network algorithm is a powerful tool in representing the many-body wavefunctions.

• Studying more challenging issues, such as probing the finite temperature, is expected as one of the future goals.