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Universality, Criticality, and RG

𝐺
Einstein’s GR

Ideal gas 
temperature

When liquid-gas transition kicks in, 𝑃#, 𝑉# depends on gas molecules.
𝑃 − 𝑃# ∝ 𝑇 − 𝑇# ) → Critical exponents are universal

Due to interaction, theoretically predicting δ is 

challenging.

In 1960s and 70s, people like Kadanoff, Wilson, 

Fisher developed an idea called renormalization 

group (RG) to calculate these exponents.  
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Block-spin: prototype of real-space RG

Migdal-Kadanoff bond moving (1976) gives 𝑥- = 2.1 (best-known value is 1.41) 
for 3D Ising; the relative error is about 50%…
• Uncontrolled approximation
• One-shot approximation

Wilson (1975) implemented a numerical 3x3 block-spin map by keeping 217 
couplings of 2D Ising:
• High accuracy—1% or even 0.1% for first two exponents
“Difficult for 3D Ising… since 3x3x3 block contains about 30 spins, 
corresponding to 103 configurations”
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Tensor-network reformulation

Evenbly and Vidal, PRL 115, 180405 
(2015)

2D classical → 1D quantum chain (radial quantization) 
→ Entanglement-entropy area law: 𝑆 𝐿 ∼ 𝑆7 [due to 
Levin and Nave, PRL 99, 120601 (2007)]

Constant 𝑆7 can justify the practice of keeping 
constant number of couplings!  

Systematically improvable 2D real-space RG!
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EE and Tensor-Network RG
Real-space RG methods often work better in low dimensions, but struggle
more in higher dimensions:
- Migdal-Kadanoff bond moving can be intuitively seen as a perturbative 

approach starting from 𝑑9
- Computationally, dimensionality of coupling constant space grows faster

For Tensor-Network RG,  entanglement entropy is a tool for understanding

RG approximation 
error

Entanglement entropy

Single-number 
characterization of the 

tensor (fixed point?)

Location of microscopic 
physics in real-space RG

XL and Kawashima, arXiv:2311.05891
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EE and TNRG: block-tensor map
Block idea in tensor-network language: block-tensor transformation 

An RG flow in tensor space: Ψ(7) → Ψ(=) → Ψ(>) → ⋯

Takeaways:
• Entanglement entropy ↗ indicates RG error ↗
• Changing entanglement entropy indicates your tensor

isn’t fixed (but we wish to have a fixed-point tensor).

XL and Kawashima, arXiv:2311.05891
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EE and TNRG: block-tensor in 3D

𝑆 𝐿 = 𝛼𝐿 − 𝐹

UV physics Universal physics Linear growth of 𝑆 marks a qualitative difference 

between 3D and 2D for block-tensor RG!

Consequences on the numerical side?

Ø Large RG truncation errors

Ø Increase states doesn’t help

RG step
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Block-tensor transformation in 3D
We perform a thorough analysis for bond dimensions up to 20

Estimates fail to convergence w.r.t RG step!

Plain HOTRG
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Block-tensor transformation in 3D
We perform a thorough analysis for bond dimensions up to 20

Estimates fail to convergence w.r.t RG step!

Plain HOTRG

Plain HOTRG
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Block-tensor transformation in 3D

XL and Kawashima, arXiv:2311.05891

(Choose the estimates that are closest to the known value)

o Estimated scaling dimensions Δ versus the bond dimension 𝜒

Plain HOTRG
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Entanglement filtering: basic idea
Area law can be circumvented in coarse-grained description if the boundary 
of the block is ”dissolved”

Invoke the wave function interpretation

Block-tensor map seen as the DMRG
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Entanglement filtering: basic idea
Area law can be circumvented in coarse-grained description if the boundary 
of the block is ”dissolved”

Vidal, PRL 99, 220405 (2007)

Disentangler
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Proposed filtering scheme
Demonstrated in the 2D square lattice, here is how to integrate
Entanglement Filtering into a block-tensor transformation:

XL and Kawashima, arXiv:2412.13758



Slide 14 of 1722/July/2024

Proposed filtering scheme
We adopt the graph-independence idea in GILT

Use another way to find the filtering 
matrix: full environment truncation

+
Evenbly, PRB 98, 
085155 (2018)

Demonstrated in the 2D square lattice, we propose:

Disentangler
interpretation:

Disentangler
interpretation:

Hauru, Delcamp, and Mizera,
PRB 97, 045111 (2018)

XL and Kawashima,
arXiv:2412.13758
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Entanglement filtering in 3D

Note: the accuracy of exponents 𝑥-, 𝑥E ranges from 1% to 0.01% for the 
majority of well-developed methods

Entanglement entropy grows in 3D: 
𝑆 = 𝛼𝐿 − 𝐹

Fixed # of couplings:
Filtering out the boundary entanglement is essential in 3D!

2D filtering:
Evenbly and Vidal
Hauru et al.

XL and Kawashima, arXiv:2412.13758
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Entanglement filtering in 3D
RG truncation errors versus the bond dimension 𝜒

XL and Kawashima, arXiv:2412.13758
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Entanglement filtering in 3D
Scaling dimensions versus the bond dimension 𝜒

For spin field 𝑥E
ü Mild decay of error with increasing bond dimension
ü The magic bond dimension is 𝜒 = 14

For energy density field 𝑥-
ü Decay of error isn’t clear; but there is no apparent increase either.
ü The magic bond dimension is 𝜒 = 6

Remark: in 2D TNR, the systematical improvement is demonstrated by increasing 
the bond dimension 𝜒 = 6 → 16 → 24

XL and Kawashima, arXiv:2412.13758
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Summary
• The Kadanoff’s block idea has been upgraded to 

become a reliable 3D real space RG
• In its best scenario, the error of 𝑥E is 0.4% and that 

of 𝑥- is 0.1% 

• The conformal tower structure is unique among all 
well-established numerical techniques
• It is a solid step towards a systematically

improvable numerical RG
15 November 2024

XL and Kawashima, arXiv:2311.05891
XL and Kawashima, arXiv:2412.13758

TN Methods Proposed HOTRG 2D MERA iPEPS

Smallest error 0.1%, 0.4% 0.9% 1.0% 1.7%

Computional cost 𝜒=>.H 𝜒== 𝜒=I 𝐷=7∼=K

𝑚 ∼ 𝜆 − 𝜆# N𝑥E, 𝑥-


