Tensor Network 2024 @ Ishikawa

Entanglement Filtering in 3D Tensor-Network Renormalization Group

XL and Kawashima, arXiv:2311.05891 *XL* and Kawashima, arXiv:2412.13758

Xinliang Lyu* and Naoki Kawashima

Institute for Solid State Phys., The University of Tokyo

** Current address: Institut des Hautes Études Scientifiques (IHES), France*

@ Zoom, 15 November 2024

 $(P - P_c) \propto (T - T_c)^{\delta} \rightarrow$ Critical exponents are universal

Due to interaction, theoretically predicting $δ$ is challenging.

In 1960s and 70s, people like Kadanoff, Wilson,

Fisher developed an idea called renormalization

group (RG) to calculate these exponents.

15 November 2024 Slide 2 of 17

Block-spin: prototype of real-space RG

Wilson (1975) implemented a numerical 3x3 block-spin map by keeping 217 couplings of 2D Ising:

High accuracy -1% or even 0.1% for first two exponents "Difficult for 3D Ising… since 3x3x3 block contains about 30 spins, corresponding to $10⁹$ configurations"

Migdal-Kadanoff bond moving (1976) gives $x_{\epsilon} = 2.1$ (best-known value is 1.41) for 3D Ising; the relative error is about 50%…

- Uncontrolled approximation
- One-shot approximation

Tensor-network reformulation

2D classical \rightarrow 1D quantum chain (radial quantization) \rightarrow Entanglement-entropy area law: $S(L) \sim S_0$ [due to Levin and Nave, *PRL* **99**, 120601 (2007)]

Constant S_0 can justify the practice of keeping constant number of couplings!

15 November 20² Evenbly and Vidal, *PRL* **115**, 180405 (2015)

EE and Tensor-Network RG

Real-space RG methods often *work better in low dimensions*, but *struggle more in higher dimensions*:

- Migdal-Kadanoff bond moving can be intuitively seen as a perturbative approach starting from d_L
- Computationally, dimensionality of coupling constant space grows faster

For Tensor-Network RG, entanglement entropy is a tool for understanding

15 November 2024 Slide 5 of 17 *XL and Kawashima, arXiv:2311.05891*

EE and TNRG: block-tensor map

Block idea in tensor-network language: *block-tensor transformation*

An RG flow in tensor space: $\Psi^{(0)} \rightarrow \Psi^{(1)} \rightarrow \Psi^{(2)} \rightarrow \cdots$

Takeaways:

- Entanglement entropy \overline{A} indicates RG error \overline{A}
- Changing entanglement entropy indicates your tensor isn't fixed (but we *wish* to have a fixed-point tensor).

15 November 2024 Slide 6 of 17 *XL and Kawashima, arXiv:2311.05891*

EE and TNRG: block-tensor in 3D

UV physics Universal physics Linear growth of marks a *qualitative* difference between 3D and 2D for block-tensor RG!

Consequences on the numerical side?

- \triangleright Large RG truncation errors
- \triangleright Increase states doesn't help

Block-tensor transformation in 3D

We perform a thorough analysis for bond dimensions up to 20

Estimates fail to convergence w.r.t RG step!

Block-tensor transformation in 3D

We perform a thorough analysis for bond dimensions up to 20

15 November 2024 Slide 9 of 17

Block-tensor transformation in 3D

o Estimated **scaling dimensions** Δ versus **the bond dimension**

(Choose the estimates that are closest to the known value)

15 November 2024 Slide 10 of 17 *XL and Kawashima, arXiv:2311.05891*

Entanglement filtering: basic idea

Area law can be circumvented in coarse-grained description if the boundary of the block is "dissolved"

Invoke the wave function interpretation

Entanglement filtering: basic idea

Proposed filtering scheme

Demonstrated in the 2D square lattice, here is how to *integrate Entanglement Filtering into a block-tensor transformation*:

22/July/2024 Slide 13 of 17 *XL and Kawashima,* arXiv:2412.13758

Proposed filtering scheme

We adopt the graph-independence idea in GILT Use another way to find the filtering +

matrix: full environment truncation

Demonstrated in the 2D square lattice, we propose:

EF

 $\ket{\phi}$

Disentangler interpretation: Hauru, Delcamp, and Mizera, *PRB* **97**, 045111 (2018)

Evenbly, *PRB* **98**, 085155 (2018)

XL and Kawashima, arXiv:2412.13758

 $|\psi\rangle$

Entanglement filtering in 3D

Entanglement entropy grows in 3D:

$$
S = \alpha L - F
$$

Fixed # of couplings:

Filtering out the boundary entanglement is essential in 3D!

Note: the accuracy of exponents x_{ϵ} , x_{σ} ranges from 1% to 0.01% for the majority of well-developed methods

15 November 2024 Slide 15 of 17 *XL and Kawashima,* arXiv:2412.13758

Entanglement filtering in 3D

Entanglement filtering in 3D

Scaling dimensions versus the **bond dimension**

Table 8.2: Estimation errors for x_{ϵ} versus bond dimension

For spin field x_{σ}

- \checkmark Mild decay of error with increasing bond dimension
- \checkmark The magic bond dimension is $\chi = 14$

For energy density field x_{ϵ}

- \checkmark Decay of error isn't clear; but there is no apparent increase either.
- \checkmark The magic bond dimension is $\chi = 6$

Remark: in 2D TNR, the systematical improvement is demonstrated by increasing the bond dimension $\chi = 6 \rightarrow 16 \rightarrow 24$

15 November 2024 Slide 17 of 17 *XL and Kawashima,* arXiv:2412.13758

Summary *XL* and Kawashima, arXiv:2311.05891 *XL* and Kawashima, arXiv:2412.13758

- The Kadanoff's block idea has been upgraded to become a *reliable* 3D real space RG
- In its best scenario, the error of x_{σ} is 0.4% and that of x_{ϵ} is 0.1% $_{x_{\epsilon}, x_{\epsilon}}$ x_{σ}, x_{ϵ} $m \sim (\lambda - \lambda_c)^{\beta}$

- The *conformal tower structure* is unique among all well-established numerical techniques
- It is a solid step towards a systematically improvable numerical RG