Tensor Network 2024 @ Ishikawa

### Entanglement Filtering in 3D Tensor-Network Renormalization Group

*XL* and Kawashima, arXiv:2311.05891 *XL* and Kawashima, arXiv:2412.13758

### Xinliang Lyu\* and Naoki Kawashima

Institute for Solid State Phys., The University of Tokyo \* Current address: Institut des Hautes Études Scientifiques (IHES), France

### @ Zoom, 15 November 2024







The Institute for Solid State Physics The University of Tokyo



When liquid-gas transition kicks in,  $P_c$ ,  $V_c$  depends on gas molecules.  $(P - P_c) \propto (T - T_c)^{\delta} \rightarrow \text{Critical exponents are universal}$ 

Due to interaction, theoretically predicting  $\delta$  is challenging.

In 1960s and 70s, people like Kadanoff, Wilson,

Fisher developed an idea called renormalization

group (RG) to calculate these exponents.



Slide 2 of 17

### **Block-spin: prototype of real-space RG**



Wilson (1975) implemented a numerical 3x3 block-spin map by keeping 217 couplings of 2D Ising:

High accuracy—1% or even 0.1% for first two exponents
"Difficult for 3D Ising... since 3x3x3 block contains about 30 spins, corresponding to 10<sup>9</sup> configurations"

Migdal-Kadanoff bond moving (1976) gives  $x_{\epsilon} = 2.1$  (best-known value is 1.41) for 3D Ising; the relative error is about 50%...

- Uncontrolled approximation
- One-shot approximation

### **Tensor-network reformulation**



2D classical → 1D quantum chain (radial quantization) → Entanglement-entropy area law:  $S(L) \sim S_0$  [due to Levin and Nave, *PRL* **99**, 120601 (2007)]

Constant  $S_0$  can justify the practice of keeping constant number of couplings!



| Systematically | improvable 2D | real-space RG! |
|----------------|---------------|----------------|
|----------------|---------------|----------------|

| exact    | TNR(6)   | TNR(16)  | TNR(24)  |
|----------|----------|----------|----------|
| 0.125    | 0.125679 | 0.124941 | 0.124997 |
| 1        | 1.001499 | 1.000071 | 1.000009 |
| 1.125    | 1.125552 | 1.125011 | 1.124991 |
| 1.125    | 1.127024 | 1.125201 | 1.125027 |
| max err. | 0.83%    | 0.046%   | 0.0069%  |

Evenbly and Vidal, *PRL* **115**, 180405 (2015)

### **EE and Tensor-Network RG**

Real-space RG methods often *work better in low dimensions*, but *struggle more in higher dimensions*:

- Migdal-Kadanoff bond moving can be intuitively seen as a perturbative approach starting from  $d_L$
- Computationally, dimensionality of coupling constant space grows faster

For Tensor-Network RG, entanglement entropy is a tool for understanding



15 November 2024

XL and Kawashima, arXiv:2311.05891

### EE and TNRG: block-tensor map

Block idea in tensor-network language: block-tensor transformation



An RG flow in tensor space:  $\Psi^{(0)} \rightarrow \Psi^{(1)} \rightarrow \Psi^{(2)} \rightarrow \cdots$ 

Takeaways:

- Entanglement entropy *¬* indicates RG error *¬*
- Changing entanglement entropy indicates your tensor isn't fixed (but we *wish* to have a fixed-point tensor).



15 November 2024

XL and Kawashima, arXiv:2311.05891

## EE and TNRG: block-tensor in 3D



Linear growth of *S* marks a *qualitative* difference between 3D and 2D for block-tensor RG!

Consequences on the numerical side?

- Large RG truncation errors
- Increase states doesn't help





### **Block-tensor transformation in 3D**

We perform a thorough analysis for bond dimensions up to 20

Estimates fail to convergence w.r.t RG step!



15 November 2024

### **Block-tensor transformation in 3D**

We perform a thorough analysis for bond dimensions up to 20



15 November 2024

### **Block-tensor transformation in 3D**

#### • Estimated scaling dimensions $\Delta$ versus the bond dimension $\chi$

(Choose the estimates that are closest to the known value)



XL and Kawashima, arXiv:2311.05891

Slide 10 of 17

# **Entanglement filtering: basic idea**

Area law can be circumvented in coarse-grained description if the boundary of the block is "dissolved"

Invoke the wave function interpretation



### **Entanglement filtering: basic idea**



## **Proposed filtering scheme**

Demonstrated in the 2D square lattice, here is how to *integrate Entanglement Filtering into a block-tensor transformation*:



XL and Kawashima, arXiv:2412.13758

22/July/2024

Slide 13 of 17

## **Proposed filtering scheme**

We adopt the graph-independence idea in GILT + Use another way to find the filtering

matrix: full environment truncation

Demonstrated in the 2D square lattice, we propose:

Hauru, Delcamp, and Mizera, *PRB* **97**, 045111 (2018)

Evenbly*, PRB* **98**, 085155 (2018)

A-+

*XL and Kawashima,* arXiv:2412.13758



Att



## **Entanglement filtering in 3D**

Entanglement entropy grows in 3D:

$$S = \alpha L - F$$

Fixed # of couplings:

Filtering out the boundary entanglement is essential in 3D!



Note: the accuracy of exponents  $x_{\epsilon}$ ,  $x_{\sigma}$  ranges from 1% to 0.01% for the majority of well-developed methods

15 November 2024 **XL** and Kawashima, arXiv:2412.13758

Slide 15 of 17

### **Entanglement filtering in 3D**



## **Entanglement filtering in 3D**

#### Scaling dimensions versus the bond dimension $\chi$

| X         | 6  | 8  | 11 | 14   |
|-----------|----|----|----|------|
| min error | 5% | 4% | 3% | 0.4% |
| max error | 8% | 6% | 6% | 0.5% |

| X         | 6    | 8  | 11 | 14 |
|-----------|------|----|----|----|
| min error | 0.1% | 4% | 1% | 2% |
| max error | 1%   | 5% | 6% | 4% |

Table 8.2: Estimation errors for  $x_{\epsilon}$  versus bond dimension

For spin field  $x_{\sigma}$ 

- ✓ Mild decay of error with increasing bond dimension
- ✓ The magic bond dimension is  $\chi = 14$

For energy density field  $x_{\epsilon}$ 

- ✓ Decay of error isn't clear; but there is no apparent increase either.
- ✓ The magic bond dimension is  $\chi = 6$

*Remark: in 2D TNR, the systematical improvement is demonstrated by increasing the bond dimension*  $\chi = 6 \rightarrow 16 \rightarrow 24$ 

<sup>15 November 2024</sup> XL and Kawashima, arXiv:2412.13758

#### **Summary** *XL* and Kawashima, arXiv:2311.05891 *XL* and Kawashima, arXiv:2412.13758

- The Kadanoff's block idea has been upgraded to become a *reliable* 3D real space RG
- In its best scenario, the error of  $x_{\sigma}$  is 0.4% and that of  $x_{\epsilon}$  is 0.1%  $x_{\sigma, x_{\epsilon}}$   $m \sim (\lambda \lambda_c)^{\beta}$

| TN Methods       | Proposed      | HOTRG       | 2D MERA     | iPEPS            |
|------------------|---------------|-------------|-------------|------------------|
| Smallest error   | 0.1%, 0.4%    | 0.9%        | 1.0%        | 1.7%             |
| Computional cost | $\chi^{12.5}$ | $\chi^{11}$ | $\chi^{16}$ | $D^{10 \sim 14}$ |

- The *conformal tower structure* is unique among all well-established numerical techniques
- It is a solid step towards a systematically improvable numerical RG