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Dual numbers

• A dual number is  with a condition . 

• Simply, ε can be regarded as an infinitesimal number. 

• Various functions/operations can be extended to dual numbers. 

• For example, . 

• Mathematically this is a commutative ring . This construction is 
nothing but an algebraic definition of a tangent space.

a + bε ε2 = 0

f(a + bε) = f(a) + bf′ (a)ε

ℂ[ε]/ε2



Forward-mode automatic differentiation

• The relation  can be used inversely to recover the 
derivative. This is called forward-mode automatic differentiation (AD). 

• This is useful when f is a complicated composite function. 

• In other words, the automatic differentiation “automatically” 
decomposes the derivative of composite functions based on the 
“chain rule” and gives you a correct answer (derivative). 

• cf. Usually, the so-called reverse-mode AD is more efficient.

f(a + bε) = f(a) + bf′ (a)ε



Hyper-dual numbers

• A hyper-dual number is  with conditions , , 
and . 

• By hyper-dual numbers we can compute the derivative up to the 
second order in a similar way as in dual numbers. 

• cf. If we impose an anticommutation relation , then it is a 
well-known Grassmann number, which is maybe useful to solve 
fermionic models like the Hubbard model (my speculation).

a + bε1 + cε2 + dε1ε2 ε2
1 = 0 ε2

2 = 0

ε1ε2 = ε2ε1

ξ1ξ2 = − ξ2ξ1



Trotter error zero limit

• Using this, we can directly take a Trotter error zero limit. 

• ,  

• Mathematically incorrect explanation: 

• If we put , then . 

• I am not sure how to make this rigorous. I need help from mathematicians!

Δτ = ε1ε2 Δτ =
ε1 + ε2

2

Δτ = 1/n Z = tr (1 −
H
n )

βn

→ tr e−βH (n → ∞)

Z = tr e−βH = tr (e−ΔτH)β/Δτ



Hyper-dual number tensor networks

•  

• Corresponding cMPO: 

• Local many-body problems = contraction of (hyper- or hyper-hyper- 
or hyper-hyper-hyper-)dual number tensor networks.

H = −
N

∑
j=1

(JSz
j Sz

j+1 + ΓSx
j )

M

imaginary time (= spin index)

space (= internal index)

=

*Sx, Sz acting on the up-down indices

1 + Γε1ε2Sx J/2(ε1 + ε2)Sz

J/2(ε1 + ε2)Sz 0

cMPO = continuous MPO



1D implementation of MPRG



cMPS algorithm for 1D finite temperature

• As already explained, a 1D finite-temperature problem is reduced to 
finding a fixed point for some cMPO. 

• We can go to the finite temperature by (in some sense) imposing 
the periodic boundary condition. I will explain “in what sense” later. 

• Of course, we can approximate the “eigenvector” by cMPS. 

• Numerically, we use a finite bond dimension (χ) for cMPS and find 
the best solution for the fixed point iteration.

Essentially same idea (original of cMPO): Tang-Tu-Wang PRL 125, 170604 (2020).



Example: 1D specific heat

• Here’s the benchmark for the cMPS & cMPS/MPS correspondence:
1D transverse field Ising model at criticality spin-1/2



From cMPS to cPEPS

• The extension to 2D or 3D is direct in the MPRG formalism. This is 
the most important advantage of our method. 

• 2D Hamiltonian -> rank-6 hyper-dual number tensor (cPEPO) -> 
diagonalization by cPEPS -> physical quantities. 

• This is simple, but technically still difficult. Currently we do not have a 
direct way of optimization, and we rather use a variational method.

cPEPO:

cPEPS->



Going to 2D (quick demos) 
 Variational formulation of RG



“Pre-matrix product state” state

• White’s idea in 1992 is understandable as a “renormalization” of the 
“dimensional reduction” (DR). 

• Focusing on a single site (or two sites), place environments EL & ER. 

• Finally, the “DMRG sweep” solves it by renormalizing whole information 
into environments! This is an original idea of DMRG by White (1992).

Solving 1d many-body systems ≒ Variational optimization of 0d systems

1d quantum system 0d system (3 or 4 sites)

EL ER……

2 22N 2N χ χ matrix2χ2 × 2χ2



MPRG is a higher-dimensional DMRG

• MPRG is a direct extension of DMRG into 2d+. 

• The left boundary of Bulk is a left env., the right bdry. is a right env. 

• Problem: is it possible to optimize EL/ER variationally by iterative DR?

Square lattice

In any dimensions, it is ok if the “environments” finally reproduces the correct transfer matrix!

3-leg 
ladder

EL ER

EL ER

EL ER

Bulk
Bulk
:: :

1d system 
(solvable 
by DMRG/ 
VUMPS)

χ χ



Recursive Hellmann-Feynman theorem
- Poor man’s way

•  : HF theorem (Eigenpair property) 

• Higher-dimensional Hermitian MPRG is done variationally by iterative 
Hellmann-Feynman thms. ← Chain rule application (Backpropagation)

dE(λ)
dλ

= ⟨ψλ |
dH(λ)

dλ
|ψλ⟩

2d systems 1d systems
0d 

systems 
(ED)

Automatic differentiation 
of (free) energyDR DR

dH(λ)
dλ

dH(λ)
dλOptimize tensors 

by a gradient method (L-BFGS) DMRG,VUMPS,sVUMPS



MPRG

• Mathematically speaking, 

• 1d many-body problem → constrained variational optimization (on 
Riemannian mfd.) 

• 2d many-body problem → bilevel constrained variational optimization 

• 3d many-body problem → trilevel constrained variational optimization 

• Finally, it gets a variational problem, but the essential idea is same as 
DMRG, i.e. “renormalization group” (iterative optimization of environments).



More details

• E(                             ) - E(                             ) = Ebulk

VUMPS/sVUMPS! VUMPS/sVUMPS!

3-leg ladder Hamiltonian 2-leg ladder Hamiltonian

bulk system

This is very much 
similar to geometric 
optimization process 
in MD/DFT.

Variational optimization! 
(just L-BFGS)



Roughly speaking,

• Construct 3-leg/2-leg ladder Hamiltonians out of an arbitrary 
boundary interactions & optimization about boundary interactions. 

• Very surprisingly, “(boundary + bulk) - boundary” contribution gives a 
good approximation of a correct 2D bulk system! 

• It seems like a very stupid idea,,, but it works! 

• Roughly speaking, “optimized” boundary interactions behave as the 
correct (renormalized!) environment of the half-infinite space.

The MPRG! *In terms of MD/DFT, the boundary feels 
“the Hellmann-Feynman force”.



How can we do gradient optimization?

• Q: How can we compute the gradient of Ebulk? 

• This is a consequence of the Hellmann-Feynman theorem, but this 
gradient works even if the eigenvector is approximate, as first pointed 
out by B. Vanhecke et al. (e.g. in the YouTube video).

AL AC AR

h

AL AC

AL AC

dh

AL AC

AL AC

d(                     ) =

mixed canonical form:

https://www.youtube.com/watch?v=efE0EekLcz4



[comment] VUMPS is a penalty method

• Regarding constrained optimization, VUMPS is a variant of a penalty 
method that is inefficient for our purpose. 

• SuperVUMPS overcomes all the issues arising, i.e., using a complete 
Riemannian optimization to impose a constraint on manifolds. 

• Details are omitted today, but no local minimum problems were 
found in SuperVUMPS. 

• The original VUMPS is known to suffer from some issues.
Check: https://github.com/MGYamada/SuperVUMPS.jl

M. Hauru et al., SciPost Phys. 10, 040 (2021).



Some results

• Ground state energy of the 2D Heisenberg model on the square 
lattice. 

• I’d rather use (χ1,χ2) 
than a usual (χ, D). 

• χ1 is for MPS, 
and χ2 is for (b/c)PEPS.

χ2 PEPS MPRG 
χ1=8

MPRG 
χ1=16

2 -0.66023 -0.66721 -0.66821

3* -0.66788 -0.6676… -0.66826

QMC: E = -0.6694



Summary

• We present 1D cMPS/cMPO/MPRG, and then 2D MPRG based on 1D 
techniques. 

• Stability of the variational optimization allows us to correctly handle the 
quantum many-body problems. 

• A lot of things are not done. We need more and more simulations. 

• Note: Today we only talk about the variational formulation of MPRG 
(vMPRG), but generally we can think of a power method version 
(power MPRG = pMPRG).


