テンソルネットワークによる 量子系の実時間シミュレーション Simulating the real-time evolution of quantum systems by tensor networks

Ryui KANEKO(金子 隆威)

Dept. of Physics, Sophia Univ. (上智大学)

Collaborator: Ippei DANSHITA (Kindai Univ.)

R. Kaneko and I. Danshita, Commun. Phys. 5, 65 (2022) R. Kaneko and I. Danshita, Phys. Rev. A 108, 023301 (2023)

- Introduction
 - Quench dynamics by analog quantum simulation
 - Importance of comparison with numerical simulations
 - Numerical difficulty in simulating the dynamics of 2D quantum systems
- Bose-Hubbard model: quench from a Mott insulating state
 - Motivation
 - Lack of reliable 2D methods
 - How far one can go by tensor-network states in 2D?
 - Tensor-network method
 - Simple update, projected entangled pair states (PEPS)
 - Results
 - Good agreement with experimental results
 - Estimate group and phase velocities for smaller U/J that has not been investigated in the experiment
- Transverse-field Ising model: quench from a disordered state
 - Motivation
 - To what extent is PEPS useful?
 - Preliminary results

- Introduction
 - Quench dynamics by analog quantum simulation
 - Importance of comparison with numerical simulations
 - Numerical difficulty in simulating the dynamics of 2D quantum systems
- Bose-Hubbard model: quench from a Mott insulating state
 - Motivation
 - Lack of reliable 2D methods
 - How far one can go by tensor-network states in 2D?
 - Tensor-network method
 - Simple update, projected entangled pair states (PEPS)
 - Results
 - Good agreement with experimental results

- Introduction
 - Quench dynamics by analog quantum simulation
 - Importance of comparison with numerical simulations
 - Numerical difficulty in simulating the dynamics of 2D quantum systems
- Bose-Hubbard model: quench from a Mott insulating state
 - Motivation
 - Lack of reliable 2D methods
 - How far one can go by tensor-network states in 2D?
 - Tensor-network method
 - Simple update, projected entangled pair states (PEPS)
 - Results
 - Good agreement with experimental results
 - Estimate group and phase velocities for smaller U/J that has not been investigated in the experiment
- Transverse-field Ising model: quench from a disordered state
 - Motivation
 - To what extent is PEPS useful?
 - Estimate group velocity and compare it with the current best estimate

- Transverse-field Ising model: quench from a disordered state
 - Motivation
 - To what extent is PEPS useful?
 - Estimate group velocity and compare it with the current best estimate

Introduction

Analog quantum simulators

Let the nature do the quantum simulations using highly controllable experimental devices

Ultracold atoms in optical lattices

[I.Bloch,Nature.453.1016('08); C.Gross,I.Bloch,Science.357.995('17); W.Hofstetter,T.Qin,J.Phys.B:At.Mol.Opt.Phys.51.082001('18)]

Rydberg atoms in optical tweezer arrays

[H.Bernien et al.,Nature.551.579('17); A.Keesling et al.,Nature.568.207('19)]

Trapped ion quantum computers

[R.Blatt,C.F.Roos,Nat.Phys.8.277('12); E.A.Martinez et al.,Nature.534.516('16); M.Gärtner et al.,Nat.Phys.13.781('17); https://physicsworld.com/wpcontent/uploads/2018/12/IonQ-chip.png]

Superconducting quantum circuits

What do we want to do using analog quantum simulators?

- Solve problems that are hard to tackle by classical computers
 - Prepare the Hamiltonian corresponding to the problem and obtain the equilibrium state (e.g. the ground state)
 - Simulate Schrödinger equation

 \rightarrow Simulations of isolated quantum many-body systems have attracted much interest

 $\boldsymbol{*}$ In experiments, quench is realized by very fast sweep

- In general, simulating time evolution requires all the information of eigenstates on classical computers
 - \rightarrow It is much harder than the ground-state calculation

In the case of ultracold atoms on optical lattices...

In the case of ultracold atoms on optical lattices...

What do we want to clarify by simulating time evolution?

- How do isolated quantum many-body systems thermalize?
- What is the upper limit of the information propagation (= Lieb-Robinson bound)?
 cf. In relativistic system:
 Upper limit = speed of light

Theoretical investigation is active recently cf. Light-cone-like behavior in Bose-Hubbard models [T.Kuwahara, K.Saito, PRL.127.070403('21)]

Desirable to simulate the dynamics of correlation spreading to answer these questions

 \rightarrow Longer-time experimental and numerical simulations are important

Comparisons between experimental and numerical simulations are desired

Propagation velocities can be obtained from equal-time correlations

- Two characteristic velocities
 - Phase velocity
 - Group velocity (≤ Lieb-Robinson bound)

 In 1D, tensor-network simulations with matrix product states (MPS) are popular • e.g. 1D Bose-Hubbard simulator Correlations after a quench

[M.Cheneau et al.,Nature.481.484('11)]

Comparisons between experimental and numerical simulations are desired

Propagation velocities can be obtained from equal-time correlations

- Two characteristic velocities
 - Phase velocity
 - Group velocity (≤ Lieb-Robinson bound)

 In 1D, tensor-network simulations with matrix product states (MPS) are popular e.g. 1D Bose-Hubbard simulator Correlations after a quench [M.Cheneau et al., Nature, 481, 484('11)]

Dynamics of doublons and holons

[K.Nagao et al., PRR.3.043091('21)]

- e.g. Quench dynamics in the 2D Bose-Hubbard model
- Semiclassical approach (truncated Wigner approximation) is not powerful enough to reproduce the intensity of correlations
- Extend the 1D MPS wave functions to 2D Examine the accuracy of the 2D tensor-network method

- Numerical simulations of time evolution on classical computers
- Crosscheck and predict experimental results
- Numerical simulations in 2D are extremely hard so far
- Focus on
 - 2D Bose-Hubbard model
 - 2D transverse-field Ising model

to examine the accuracy of the 2D tensor-network method

Tensor-network method

• Wave function for quantum spin systems: $|\psi\rangle = \sum_{\{s_i\}} C_{s_1,s_2,...,s_N} |s_1,s_2,\ldots,s_N\rangle \quad \#\text{elements} = O(e^N)$

• In 2D: Projected entangled pair state (PEPS), tensor product state

- $D_{phys} = 2S + 1$ for spin S (chosen to be sufficiently large for soft-core bosons)
- D = 1: direct product state
- D ≥ 2: entangled state
- Wave functions are more accurate for larger *D*
- Translational invariant PEPS can treat infinite systems

[T.Nishino et al., PTP.105.409('01); F.Verstraete, J.Cirac, arXiv:cond-mat/0407066]

Simulating real-time evolution by infinite PEPS

• Real-time evolution of infinite PEPS: $|\psi(t)
angle=e^{-itH}|\psi(0)
angle$

Time-evolving block decimation in 2D (= simple update) [comp. cost: $O(D^5)$] [H.C.Jiang,Z.Y.Weng,T.Xiang('08): P.Corboz et al.('10)]

• Calculation of expectation values for infinite PEPS:

[R.J.Baxter('68); T.Nishino,K.Okunishi('96,'97); R.Orus,G.Vidal('09)]

• Previous studies on 2D quench dynamics (full update): e.g. transverse-field Ising model (tr.-field: $h^x = \infty \rightarrow h_c^x$) Time $\lesssim \hbar/J$ accessible by increasing bond dimension D

[A.Kshetrimayum et al.,Nat.Commun.8.1291('17); P.Czarnik et al.,PRB.99.035115('19); C.Hubig,J.I.Cirac,SciPost.Phys.6,031('19)]

Quench dynamics in the Bose-Hubbard model

Motivation:

- Reproduce experimental results
- Examine the parameter region that has not been explored

Numerical setup: Wish to calculate $|\psi(t)\rangle = e^{-iHt}|\psi_0\rangle$

[Y.Motoyama et al., Comp.Phys.Commun.279.108437('22); https://github.com/issp-center-dev/TeNeS, https://github.com/TsuyoshiOkubo/pTNS]

Numerical results: Comparison with the experiment at U/J = 19.6

Numerical results: Estimate propagation velocities from $\langle a_0^{\dagger}a_r \rangle$ and $\langle n_0n_r \rangle$

$$\begin{split} C_r^{\rm sp}(t) &= \frac{1}{2N_{\rm s}} \sum_{r_i - r_j = r} \langle \hat{a}_i^{\dagger}(t) \hat{a}_j(t) + \hat{a}_j^{\dagger}(t) \hat{a}_i(t) \rangle \\ C_r^{\rm dd}(t) &= \frac{1}{N_{\rm s}} \sum_{r_i - r_j = r}^{r_i - r_j = r} (\langle \hat{n}_i(t) \hat{n}_j(t) \rangle - 1) \end{split}$$

v_{phase}: captured by single-particle correlation (a[†]₀a_r)
 v_{group}: captured by density-density correlation (n₀n_r)

Numerical results: Estimate propagation velocities from $\langle a_0^{\dagger}a_r \rangle$ and $\langle n_0n_r \rangle$

Numerical results: U dependence of velocity

- For $U \lesssim zJ$ (z = 4), single-particle picture (mean-field-like picture) holds $v_{
 m group} \sim 4J/\hbar$ [K.Nagao et al., PRA.99.023622('19)]
- For $U \gg J$, quasi-particle picture holds $v_{
 m group} \sim 6J/\hbar \times [1 + \mathcal{O}(J^2/U^2)]$ [M.Cheneau et al.,Nature.481.484('11)]
- $v_{
 m group}$ estimated from $\langle n_0 n_r
 angle$ consistent with
 - single-particle group velocity deep in superfluid region
 - strong-coupling result near criticality
- $v_{
 m phase}$ and $v_{
 m group}$ gradually converge to the same value as U/J is decreased

- Quench dynamics from Mott insulator in 2D Bose-Hubbard model
- Simulation by infinite PEPS using simple update
- Compare PEPS simulations with experiments ightarrow Good agreement for $tJ/\hbar \lesssim 0.4$ at U/J=19.6

• Estimate velocity of correlation spreading for smaller U/J

R. Kaneko and I. Danshita, Commun. Phys. 5, 65 (2022)

Quench dynamics in the 2D transverse-field Ising model

Motivation:

- How good is the 2D tensor-network method in this case?
- How does the group velocity for spin correlations look? (Compare with the recently updated Lieb-Robinson bound)

Analog quantum simulations of the quantum Ising model by Rydberg-atom arrays

[H.Bernien et al., Nat.551.579('17); A.Keesling et al., Nat.568.207('19); E.Guardado-Sanchez et al., PRX.8.021069('18); V.Lienhard et al., PRX.8.021070('18); D.Bluvstein et al., Science. 371.1355('21); P.Scholl et al., Nat.595.233('21); S.Ebadi et al., Nat.595.227('21); ...] $H = \Omega \sum_i S_i^x - \Delta \sum_i n_i + V \sum_{\langle ij
angle} n_i n_j \ \left(n_i = S_i^z + rac{1}{2}, \ D: \ ext{dim.}
ight)$ $S=\Omega\sum_i S^x_i - (\Delta-VD)\sum_i S^z_i + V\sum_{\langle ij
angle} S^z_i S^z_j + \sum_i igg(rac{VD}{4}-rac{\Delta}{2}igg)$ Square lattice 420 nm 1.013 nm V 4 PMAFM $\Omega_{\rm B}$ $\times 1.522$

	Rydberg atoms	quantum Ising model	
bases	g angle , $ r angle$	↓⟩, ↑ ⟩	
Ω	Rabi frequency	transverse field	
Δ	detuning	longitudinal field	0.0 0.5 1.0 1.5
V	van der Waals interaction	Ising spin interaction	Ω/V

Very recently, real-time dynamics for # qubits > 200 How does information propagate?

Distances longer than those by the exact diagonalization method are calculable

Conclusions

- Simulating the dynamics of 2D systems by the tensor-network method with iPEPS
- Focus on the quench in the 2D Bose-Hubbard and transverse-field Ising models
 Bose-Hubbard case
 Ising case
 - Good agreement with the experiment

 Examine the parameter region that has not been explored

R. Kaneko and I. Danshita, Commun. Phys. 5, 65 (2022) Group velocity satisfies the Lieb-Robinson bound (but the value is much smaller than the bound)

- $v_{\rm spin}/J \approx 1$ both in 1D and 2D • Recent estimate $v_{\rm LR}/J = 5.672$ is still loose?
- Provide numerical data that can be compared with future experiments

R. Kaneko and I. Danshita, Phys. Rev. A 108, 023301 (2023)

Backup slides

Quench dynamics in the 2D transverse-field Ising model

Motivation:

- How good is the 2D tensor-network method in this case?
- How does the group velocity for spin correlations look? (Compare with the recently updated Lieb-Robinson bound)

Analog quantum simulations of the quantum Ising model by Rydberg-atom arrays

[H.Bernien et al., Nat.551.579('17); A.Keesling et al., Nat.568.207('19); E.Guardado-Sanchez et al., PRX.8.021069('18); V.Lienhard et al., PRX.8.021070('18); D.Bluvstein et al., Science. 371.1355('21); P.Scholl et al., Nat.595.233('21); S.Ebadi et al., Nat.595.227('21); ...] $H=\Omega\sum_i S_i^x-\Delta\sum_i n_i+V\sum_{\langle ij
angle} n_in_j ~~ \left(n_i=S_i^z+rac{1}{2},~D:~{
m dim.}
ight)$ $S=\Omega\sum_i S^x_i - (\Delta-VD)\sum_i S^z_i + V\sum_{\langle ij
angle} S^z_i S^z_j + \sum_i igg(rac{VD}{4}-rac{\Delta}{2}igg)$ Square lattice 420 nm 1.013 nm V 4PMAFM $\Omega_{\rm B}$ $|g\rangle \Delta/V^2$ $\times 1.522$

	Rydberg atoms	quantum Ising model	1				
bases	g angle , $ r angle$	$ \downarrow\rangle, \uparrow\rangle$	0				
Ω	Rabi frequency	transverse field	UE				— — —
Δ	detuning	longitudinal field	0.0)	0.5	1.0	1.5
V	van der Waals interaction	Ising spin interaction			Q	V/V	

Very recently, real-time dynamics for # qubits > 200 How does information propagate?

Lieb-Robinson bound: Upper limit of group velocity for any correlations

• Consider regions A and B in a lattice system with short-range interaction

• Commutator of any operators O_A and O_B in regions A and B satisfies

$$||[O_A(t),O_B]|| \leq ext{const.} imes \exp\left(-rac{L-vt}{\xi}
ight)$$

• $O_A(t) = e^{iHt}O_A e^{-iHt}$, L: distance between A and B, ξ : const.

• v: Lieb-Robinson bound

- Information from A is transmitted to B up to $t\sim L/v$
- It tells the presence of bound, but not the value itself

Light-cone-like spreading of time-dependent correlations

- Corollary: For a state with finite correlation length $\pmb{\xi}$
 - Bound for any equal-time correlations: [S.Bravyi et al.,PRL.97.050401('06)]

- Velocity v: Lieb-Robinson bound
- Exact Lieb-Robinson bound is known only for a few lattice models (e.g. 1D systems)
- Lieb-Robinson bound gets tighter very recently [Z.Wang,K.R.A.Hazzard,PRXQuant.1.010303('20)]

How to get/estimate Lieb-Robinson velocity

 Bound for any equal-time correlations: [S.Bravyi et al., PRL.97.050401('06)]
 L-2vt

• Intuitively, prefactor ${f 2}$ comes from left and right moving quasiparticles

From dispersion

•
$$v = \max_{k} \frac{d\omega(k)}{dk}$$

- In 1D TFIsing, $\omega(k)$ is exactly known and the exact v is obtained
- Precise shape of dispersion $\omega(k)$ is not known in general

From peak localtions in correlations

- $v_{\text{experiment}} = 2v$
- Useful in experiments

Numerical setup: Transverse-field Ising model

Ground-state phase diagram in 2D

[R.Kaneko et al., JPSJ.90.073001('21)]

$$H=+J\sum_{\langle ij
angle}S_{i}^{z}S_{j}^{z}-\Gamma\sum_{i}S_{i}^{x}-h\sum_{i}S_{i}^{z}$$

• For simplicity, focus on h=0 case \rightarrow Map to ferromagnetic model by appropriate unitary transformation

$$H = -J\sum_{\langle ij
angle}S^z_iS^z_j - \Gamma\sum_iS^x_i$$

• Sudden quench from the $\Gamma=\infty$ ground state $|
ightarrow \cdots
ightarrow
angle$

 $|\psi(t)
angle = e^{-iHt/\hbar}| \rightarrow \rightarrow \cdots \rightarrow
angle$

 $\Gamma_{
m c,1D}/J=0.5$ $\Gamma_{
m c,2D}/Jpprox 1.522$

• How does the group velocity for spin correlations look?

Estimate $v_{ ext{experiment}} = 2v$ numerically from peak locations For comparison, we also consider the 1D case

* The data is not shown because it was consistent with the exact result

- 1D, exact
 - Jordan-Wigner transformation: Spin \rightarrow Fermion
 - Time-dependent correlations: Pfaffian (= ±√determinant) of the matrix containing two-body correlations of fermions
- 1D, 2D, spin wave approx.
 - Holstein-Primakoff transformation: Spin → Boson (magnon)
 - Time-dependent correlations: Function of magnon dispersions

$$\begin{split} C^{zz}(r,t) &= \langle \psi(t) | \hat{S}_r^z \hat{S}_0^z | \psi(t) \rangle \\ C^{xx}(r,t) &= \langle \psi(t) | \hat{S}_r^x \hat{S}_0^x | \psi(t) \rangle - \langle \psi(t) | \hat{S}_r^x | \psi(t) \rangle \langle \psi(t) | \hat{S}_0^x | \psi(t) \rangle \end{split}$$

Numerical results: 1D, approximate method

Focus on the spin wave approx.

$$\begin{split} C^{zz}(r,t) &= \langle \psi(t) | \hat{S}_r^z \hat{S}_0^z | \psi(t) \rangle \\ C^{xx}(r,t) &= \langle \psi(t) | \hat{S}_r^x \hat{S}_0^z | \psi(t) \rangle - \langle \psi(t) | \hat{S}_r^x | \psi(t) \rangle \langle \psi(t) | \hat{S}_0^x | \psi(t) \rangle \end{split}$$

- Accurate up to the point where they begin to increase
- Group velocity of spin-spin correlations \rightarrow Lieb-Robinson velocity (v/J = 1) when $\Gamma \gg J$
- For a small quench $(\Gamma = \infty \text{ to } \Gamma \gg J)$, few quasiparticles are involved, and SW approx. is good

Numerical results: 2D, spin wave approx. (should be good for higher dimensions)

Agreement is slightly better than in 1D

normalized correlation function $C^{xx}(r,t)/\max_{t\in [0,L/(2J)]}C^{xx}(r,t)~(\in [0,1])$

- Light-cone-like spreading of correlations in 2D as well
- For $\Gamma/J \gg 1$, the group velocity estimated from the peak location is v/J pprox 1
- The group velocity estimated from the SW dispersion $\Omega_k = \sqrt{\Gamma^2 - \frac{z}{2}\Gamma J \gamma_k} (\gamma_k = \frac{1}{D}\sum_{\nu=1}^D \cos k_\nu, z = 2D, D: \text{ dimension}) \text{ is } v^{\text{SW}}/J = (1 - J/\Gamma + \sqrt{1 - 2J/\Gamma})^{-1/2}/\sqrt{2},$ which also approaches $v/J \approx 1$ for $\Gamma/J \gg 1$

Distances longer than those by the exact diagonalization method are calculable

- Since the energy is conserved for a short time, accessible time is limited
- Not easy to esitimate the group velocity from iPEPS data
- Assume light-cone-like spreading of correlations (as in SW approx.) exists and the peak localtion eventually grows linearly with the peak time
- Estimate v = r/t(r) for each distance $r: v/J \in [0.86, 1.3]$

	from dispersion (fermion or magnon)	from peak location $(C^{zz,xx}(r))$	from recent inequality* (any correlations)	
1D, exact	1 (exact)	1.0	< 3.02	
1D, SW	1.0	1.0	_ 0.02	
2D, PEPS	N/A	$\in \left[0.86, 1.3 ight]$	< 5.672	
2D, SW	1.0	1.0	_ 0.012	

* [Z.Wang,K.R.A.Hazzard,PRXQuant.1.010303('20)]

- In 1D, the spin correlation provides the group velocity corresponding to the fastest quasiparticle (identical to exact Lieb-Robinson bound)
- If this is so in 2D as well, LR bound in 2D TFIsing would also be $v/J = 1 \rightarrow \text{Room}$ for improvement in LR bound?

- Quench dynamics from the disordered state in 2D transverse-field Ising model
- Simulation by infinite PEPS using simple update

- Our estimate of the group velocity: $v_{
 m spin}/J\sim 1$
- This is much smaller than the current best Lieb-Robinson bound: $v_{
 m LR,horiz}/J=5.672$
- Our group velocity and spin correlations are helpful for crosschecking experimental data

R. Kaneko and I. Danshita, Phys. Rev. A 108, 023301 (2023)