a0 SVA Ay Ealsd tel ¥
EFROEEFM>IaL—>3Y

Simulating the real-time evolution
of quantum systems by tensor networks

Ryui KANEKO (£F &)

Dept. of Physics, Sophia Univ. (F8X%)
Collaborator: Ippei DANSHITA (Kindai Univ.)

R. Kaneko and |. Danshita, Commun. Phys. 5, 65 (2022)
R. Kaneko and |. Danshita, Phys. Rev. A 108, 023301 (2023)

0.8
O iPEPS, D=5
0.6 Ulna=196 | 3§ Fmbee it
= 2e88888. 0T p ol o | g boos®
7045 g | §2 ol epe o
o s e
02F & BES.D-5 A BEPS.D-§ 2
0 WESD-6 T eporimenal Gl (0 o1 d = U/dina1 = 19.6
O PEps.D=7
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4
time tJginal /Bt first-peak time tJ/h

1/30



Outline

® |Introduction
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® |mportance of comparison with numerical simulations
® Numerical difficulty in simulating the dynamics of 2D quantum systems
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Introduction



Analog quantum simulators

Let the nature do the quantum simulations using highly controllable experimental devices

Ultracold atoms in optical lattices Rydberg atoms in
[I.Bloch,Nature.453.1016(’08); optica| tweezer arrays
C.Gross,|.Bloch,Science.357.995('17); W.Hofstet- i X .
ter,T.Qin,J.Phys.B:At.Mol.Opt.Phys.51.082001('18)] [H.Bernien et al.,Nature.551.579('17); A.Keesling et
al.,Nature.568.207('19)]
Cm m el
'!"“W'“ E 5 1,013 nm v, Ao 2,

Trapped ion quantum computers  Superconducting quantum circuits

[R.Blatt,C.F.Roos,Nat.Phys.8.277('12); E.A.Martinez et [R.Ma et al.,Nature.566.51('19); Y.Ye et
al.,Nature.534.516('16); M.Gértner et al.,PRL.123.050502('19)]
al.,Nat.Phys.13.781('17);
https://physicsworld.com/wp-
content/uploads/2018/12/IonQ-chip.png]

|
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What do we want to do using analog quantum simulators?

® Solve problems that are hard to tackle by classical computers
® Prepare the Hamiltonian corresponding to the problem and
obtain the equilibrium state (e.g. the ground state)
® Simulate Schrodinger equation
— Simulations of isolated quantum many-body systems have
attracted much interest

pavameter pavame ter

Time <ime

gimench Sweep
* In experiments, quench is realized by very fast sweep

® |n general, simulating time evolution requires all the information of
eigenstates on classical computers
— It is much harder than the ground-state calculation
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In the case of ultracold atoms on optical lattices...
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In the case of ultracold atoms on optical lattices...

Ve =V, sin® (fx)
weaker Vo Stronger Vo
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What do we want to clarify by simulating time evolution?

® How do isolated quantum many-body

systems thermalize? MMM
® \What is the upper limit of the information ‘ z
propagation (= Lieb-Robinson bound)? equalebran

cf. In relativistic system:
Upper limit = speed of light o Jloldtime[f/]

o = =z

0

o o o
[N]
L]

ks M
Theoretical investigation is active recently gZ%
cf. Light-cone-like behavior in Bose-Hubbard %L:E‘[ LT =

models [Y.Takasu et al., sciadv.aba9255('20)]
[T.Kuwahara, K.Saito, PRL.127.070403('21)]

Desirable to simulate the dynamics of correlation spreading
to answer these questions

— Longer-time experimental and numerical simulations are important
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Comparisons between experimental and numerical simulations are desired

Propagation velocities can be obtained from equal-time correlations

® Two characteristic velocities ® ec.g. 1D Bose-Hubbard simulator
® Phase velocity Correlations after a quench
® Group velocity (< Lieb-Robinson bound) [M.Cheneau et al. Nature.481.484('11)]
T, \ ; 1
/ "
/ \ s '
/
\ 3
\
\ /
envelope of
wave packet \ the wave packet
4 1/
phase velocity group velocity S FSUTOUS 0 SO
® |n 1D, tensor-network o b T TR
simulations with matrix product et e P
states (MPS) are popular L

Time, t (1)
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Comparisons between experimental and numerical simulations are desired

Propagation velocities can be obtained from equal-time correlations

® Two characteristic velocities
® Phase velocity

® Group velocity (< Lieb-Robinson bound)

T,

|

wave packet \

N

-

envelope of
the wave packet

phase velocity group velocity

® |n 1D, tensor-network

simulations with matrix product
states (MPS) are popular

® c.g. 1D Bose-Hubbard simulator
Correlations after a quench
[M.Cheneau et al.,Nature.481.484('11)]

Quasiparticle picture

quench
@/ \@/ \o/ \@/ \@/ \@/ \o/ \@

position
—_—

W
g \e o/ \o/\o o/ \o/ 32

d=vt

Dynamics of doublons and holons
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Numerical simulations in 2D are extremely hard

o D)
QU et ] ot [/
< B I TR 3ty santd
03 04 ERRU LR "
-
o A=(1,0)] o A=(1,1)
04 tJ/rI 02
wf@) wld) e A=(3,0)
03 K N~ =3 41 ST g
qoa} 7 - sl *H,,}uummmlum
e ey O o o o
s RS 1) AN A=
. 0 (I -1
ousty A= (2,001 Gt S
T e R o S| 19 Jiygy, et
t]/h 01 02 03 04 05 06 07 08 09

tJ/h
[K.Nagao et al., PRR.3.043091('21)]

® c.g. Quench dynamics in the 2D Bose-Hubbard model

® Semiclassical approach (truncated Wigner approximation) is not
powerful enough to reproduce the intensity of correlations

® Extend the 1D MPS wave functions to 2D
Examine the accuracy of the 2D tensor-network method
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Motivation

Numerical simulations of time evolution on classical computers
Crosscheck and predict experimental results

Numerical simulations in 2D are extremely hard so far

Focus on

® 2D Bose-Hubbard model
® 2D transverse-field Ising model

to examine the accuracy of the 2D tensor-network method
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Tensor-network method



Tensor-network states: MPS and PEPS

® \Wave function for quantum spin systems:
= Z 031732’.__73N|51, 82y ey SN> #elements = O(elV)
{si}
® |n 1D: Matrix product state (MPS)
Cs 508 Ajlsi]

® |n 2D: Projected entangled pair state (PEPS) tensor product state
Dgphys = 28 + 1 for spin S

(chosen to be sufficiently large for
soft-core bosons)

virtual .D ® D = 1: direct product state
bond * ° .
D > 2: entangled state

® \Wave functions are more

dim. of local . p phys accurate for larger D

Hilbert space’
(spin, boson, ...) ® Translational invariant PEPS

can treat infinite systems
[T.Nishino et al.,PTP.105.409('01); F.Verstraete, J.Cirac, arXiv:cond-mat/0407066]
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Simulating real-time evolution by infinite PEPS

® Real-time evolution of infinite PEPS: |1(t)) = e~“H|(0))

, : i Time-evolving block decimation in 2D
T % [t” : (= simple update)  [comp. cost: O(D5)]
o [H.C.Jiang,Z.Y . Weng, T.Xiang('08); P.Corboz et al.('10)]

® Calculation of expectation values for infinite PEPS:

environment S Corner transfer matrix renormalization
~ |- group method  [comp. cost O(D19)]
[R.J.Baxter('68); T.Nishino,K.Okunishi('96,'97);
edge R.Orus,G.Vidal('09)]

® Previous studies on 2D quench dynamics (full update):
e.g. transverse-field Ising model (tr.-field: h* = co — h?)
Time < i/ J accessible by increasing bond dimension D

1 : : :

R
L B 3 D=2
095 1w 10 D=3
540.90 - 45 o D-4
5 L 4 KW D=5
085~ 4 < — D=t
0.80 = I N -10 ! — b
.0 0.5 1 0 0.5 1 — D=8

time time

[A.Kshetrimayum et al.,Nat.Commun.8.1291('17); P.Czarnik et al.,PRB.99.035115('19);
C.Hubig,J.I.Cirac,SciPost.Phys.6,031('19)]
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Quench dynamics in the Bose-Hubbard model

Motivation:
® Reproduce experimental results

® Examine the parameter region that has not been explored



Numerical setup: Wish to calculate [¢(t)) = e_iﬁtwo)

® Square Bose-Hubbard model: & = >~ A;;
(i3}
o R St u.. - . Mo . _
H;; = —J(a;a; + a;a;) + g['ni(ni — 1)+ ai(n; —1)] — ;(ni +7j) (2 =4)

[V.Murg et al. PRA('07); J.Jordan et al.,PRB('09); A.Kshetrimayum et al.,PRL('19); S.S.Jahromi and R.Orus,PRB('19); P.Schmoll et al.,PRL('20);
W.-L.Tu et al., JPCM('20); H.-K.Wu et al.,PRA('20); P.C.G.Vlaar and P.Corboz et al.,PRB('21)]

® Simple update by e.g. e~ #tH/ II e~ idtH ;i /h
(i3)
(use second-order Suzuki-Trotter decomposition in practice)
Very fast (rq > 0) and sudden (rq = 0) quenches from Mott insulator ®;|n; = 1)
Experimental setup: U/J ~ 100 — 19.6 in Tq = 0.1ms
(U/J = 19.6 > 16.74 = U./J: Mott insulating region)

Auu 1.2 30
7 08F™N 126 v
I M‘lm Superfluid \\
nsulator Jfinal \ Jfinal
- \\ A
JIU i e ]
O—T 0 I8
WV 00000 Q time ¢

® Use tensor-network library TeNeS

[Y.Motoyama et al., Comp.Phys.Commun.279.108437('22); https://github.com/issp-center-dev/TeNeS, https://github.com/TsuyoshiOkubo/pTNS]
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Numerical results: Comparison with the experiment at U/J = 19.6
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Numerical results: Comparison with the experiment at U/J = 19.6

O3 (1) =

1

2Ns

ST (alhas(t) + al(taa(t))

0

Consider finite quench time as in the experiment
Nearly conserved energy for 0 < tJ/h < 0.4
Single-particle correlations agree very well

How about other parameter regions?

How does the propagation velocity behave?

Set quench time Tq = 0 hereafter

0.1

02 03
time 1Jgna /7t

0.4

0.8
0.6}
V.—_.OA-
ex
© 0.2+ O iPEPS, D=5
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Numerical results: Estimate propagation velocities from (a(T)aT) and (non,)

U
[~
.
.
o
.
.
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Ir|
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energy density

»

.

.

.

.

.
oleio s
oleiole
Seicle

b

o

time ¢J /1

5
=
Consider a sudden quench = -0.05
3=
§)

Energy is conserved for longer time

tJ/h < 0.9 whenU/J ~ 5 ~0.10

Can capture peaks up to |r| < 3

0 02 04 06 08 1 0.00

0.0 02 0.4 0.6 038
time tJ /h

CRM) = 3 (al(®a;t) +al®ai)

2Ns

ri—Tij=1

c:’d(t)=Nis S (A1) — 1)

Ti—T;=T

® wvphase! Captured by single-particle correlation (a,;ga,.)
® vgroup: captured by density-density correlation (non.)
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Numerical results: Estimate propagation velocities from (a(T)aT) and (non,)

4
E3 I o Uy=50 E
8 o u/=100 £
5 2r A U=150 E
Z vV Ui=196 S
= —
I o Dp=g e
o p=9 8}
00 0.2 0.4 0.6 0.8 1
C"‘fl(t)’s first-peak time 7./ /h
4 0.00
)
2
E3 I O U/=50 3
8 o up=00| X _
% 2r Y A vp=s0| = 0.05
% ® v oun=196| BE
S| &)
o D=8
0 D=9 -0.10
% 0.2 0.4 0.6 0.8 1 0.0 02 0a 0.8 03
dd(1)'s first-peak ti (
Cly(1)'s first-peak time ¢ /7 time £J /7

orm) =g X (@mas +al®a)

ri—Tij=1

CHM) = o X (n®rg0) — 1)

Ti—Tj=T
® wvphase! Captured by single-particle correlation (a,;ga,.)
® vgroup: captured by density-density correlation (non.)
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Numerical results: U dependence of velocity

[S—
(@)}

[a—
\)
T

i §§%$ % = %
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§ > u mm E r;;;pmmwm m “;yphrips([) -3) m “]\yPhF_PS(D —9)
4 ‘Llruuyﬂ ko3 ‘,le’lw\ [0) ‘,LI;‘E:I’S”) =8) [0} \,g;u’s(,) -9)
1

1
5 10 15 20 25
UjJ
For U < zJ (z = 4), single-particle picture (mean-field-like picture) holds
Vgroup ~ 4J/h  [K.Nagao et al. PRA.99.023622('19)]
For U > J, quasi-particle picture holds
Vgroup "~ GJ/h X [1 + O(Jz/Uz)] [M.Cheneau et al.,Nature.481.484('11)]

.p

propagation velocities
o0

=
o

Vgroup estimated from (non.) consistent with
® single-particle group velocity deep in superfluid region
® strong-coupling result near criticality
VUphase and Vgroup gradually converge to the same value as U/J is decreased
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Conclusions: Bose-Hubbard case

® Quench dynamics from Mott insulator in 2D Bose-Hubbard model

® Simulation by infinite PEPS using simple update

® Compare PEPS simulations with experiments
— Good agreement for tJ/h < 0.4 at U/J = 19.6

ulv

0.8

JIURquench
time

0.6

Superfluid 04

WV 00000¢

VUphase and Vgroup

to the same value as U/ J is decreased

Might be helpful for

fIEE T e
8ol B’ i am
5 et
'y b U/ = 196
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4
time tJgina/fi first-peak time tJ/h
® Estimate velocity of correlation spreading for smaller U/J
" £ .
gradually converge 512: §§§E % - T
L e t
future experiments £ AL Il oo
=0
o 5 10 15 20 25
Ul

R. Kaneko and I. Danshita, Commun. Phys. 5, 65 (2022)
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Quench dynamics in the 2D transverse-field Ising model

Motivation:
® How good is the 2D tensor-network method in this case?

® How does the group velocity for spin correlations look?
(Compare with the recently updated Lieb-Robinson bound)



Analog quantum simulations of the quantum Ising model
by Rydberg-atom arrays

[H.Bernien et al.,Nat.551.579('17); A.Keesling et al.,Nat.568.207('19);
E.Guardado-Sanchez et al.,PRX.8.021069('18); V.Lienhard et al.,PRX.8.021070('18);
D.Bluvstein et al.,Science.371.1355('21); P.Scholl et al.,Nat.595.233('21); S.Ebadi et al.,Nat.595.227('21); ..]

H=QZS$-AZn,+Van, (n,-=siz+%, D: dim.)
[

(i3)
VD A
_nZsm—(A VD)Zsz+VZszsz+Z(———)
(i)
Ay Square lattice
1,013 nm ‘/l 420 nm Qg 4
TP~ EEIN PM
— 9 A/V 2 1.522
Rydberg atoms quantum Ising model 1
bases [g). Tm) [ 11) 0
Q Rabi frequency transverse field >
A detuning longitudinal field 0.0 0.5 1.0 1.5
\4 van der Waals interaction Ising spin interaction Q/V

Very recently, real-time dynamics for # qubits > 200
How does information propagate?
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Numerical results: 2D, iPEPS

cz*

(ryt) = (P()SZ S5 v (1))

CT%(r,t) = (P(B)IST G [0 (8)) — (b (B)ST 19 () (% (£)I155 |4 (£))

C#(r = v/2.1)
—0.5

x10-2

a g T/T=90 [ ]

—— PEPS, Dy = 5. 1..7.5; 0 2 4 6

5x5

® ED N,

time t.J

x10~°
r/J=9.0
Crr =1, 1000,
0.0 I i i
100f ~ N
C*(r =2.t) M::g%—'g
0.0 I !
0.0 .
cor—ap) 1O
0.0 I | _
0.5F
Cr(r = 5,1) J\/
0.0 T | 1 I
25.0F i
C"'(r — ﬁ t) \
0.0 ? -
—— PEPS, Dy =5.6,7,8 0 2 4 6
® ED N.=5x5 time ¢.J

Distances longer than those by the exact diagonalization method are calculable
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Conclusions

® Simulating the dynamics of 2D systems by the tensor-network method with iPEPS
® Focus on the quench in the 2D Bose-Hubbard and transverse-field Ising models

Bose-Hubbard case

Ising case

® Good agreement with the experiment ® Group velocity satisfies the
0.8 Lieb-Robinson bound
06 (but the value is much smaller than
704 the bound)
el Fimn e s
Olse” : : : sz g
0 0.1 0.2 0.3 0.4 0.5 Q
time #Jfina /1t 5‘
L05f
® Examine the parameter region that has oo
not been explored oo
£ 16
—;12 ® Vspin/J = 1 both in 1D and 2D
£ ® Recent estimate vpr/J = 5.672 is
I still loose?
g
&
0 5 10 o 15 20 25 ® Provide numerical data that can be

R. Kaneko and |. Danshita,
Commun. Phys. 5, 65 (2022)

R. Kaneko and I.

compared with future experiments

Danshita,

Phys. Rev. A 108, 023301 (2023)
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Quench dynamics in the 2D transverse-field Ising model

Motivation:
® How good is the 2D tensor-network method in this case?

® How does the group velocity for spin correlations look?
(Compare with the recently updated Lieb-Robinson bound)



Analog quantum simulations of the quantum Ising model
by Rydberg-atom arrays

[H.Bernien et al.,Nat.551.579('17); A.Keesling et al.,Nat.568.207('19);
E.Guardado-Sanchez et al.,PRX.8.021069('18); V.Lienhard et al.,PRX.8.021070('18);
D.Bluvstein et al.,Science.371.1355('21); P.Scholl et al.,Nat.595.233('21); S.Ebadi et al.,Nat.595.227('21); ..]

H=QZS$-AZn,+Van, (n,-=siz+%, D: dim.)
[

(i3)
VD A
_nZsm—(A VD)Zsz+VZszsz+Z(———)
(i)
Ay Square lattice
1,013 nm ‘/l 420 nm Qg 4
TP~ EEIN PM
— 9 A/V 2 1.522
Rydberg atoms quantum Ising model 1
bases [g). Tm) [ 11) 0
Q Rabi frequency transverse field >
A detuning longitudinal field 0.0 0.5 1.0 1.5
\4 van der Waals interaction Ising spin interaction Q/V

Very recently, real-time dynamics for # qubits > 200
How does information propagate?
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Lieb-Robinson bound:
Upper limit of group velocity for any correlations

Consider regions A and B in a lattice system with short-range interaction
Commutator of any operators O 4 and Op in regions A and B satisfies

[[[0a(t),Or]|| < const. X exp (—L ; Ut)

Oa(t) = etHtOpe—*Ht,  [: distance between A and B, §&: const.
v: Lieb-Robinson bound

® |nformation from A is transmitted to B up to t ~ L/v
® |t tells the presence of bound, but not the value itself
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Light-cone-like spreading of time-dependent correlations

® Corollary: For a state with finite correlation length &

® Bound for any equal-time correlations:
[S.Bravyi et al.,PRL.97.050401('06)]

L—2vt

[{0a(t)OB(t)) — (0a(t))(OB(t))| < const. X e ¢

w1

iz/r('owwa‘(’iotf\
an T

Pw\m%ﬂﬂ’/
{n the
hetghbovhood

Covvrelations p. ‘V—,L\',—

develop

(t2+) (t<£)

coweletio g

decay

ce?(fa(r/.@

k” .

<

€too fu

L

® Velocity v: Lieb-Robinson bound

® Exact Lieb-Robinson bound is known only for a few lattice models

(e.g. 1D systems)

® | jeb-Robinson bound gets tighter very recently
[Z.Wang,K.R.A.Hazzard, PRXQuant.1.010303('20)]
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How to get/estimate Lieb-Robinson velocity

® Bound for any equal-time correlations: [S.Bravyi et al.,PRL.97.050401('06)]

[(OA(t)OB(t)) — (OA(t))(OB(t))| < const. X e_L_ﬁzvt
Tlat

Ste
® |[ntuitively, prefactor 2 comes from left and right moving quasiparticles

From dispersion From peak localtions in correlations

dw(k:) ° Vexperiment — 2v
dk ® Useful in experiments
® In 1D TFlsing, w(k) is exactly known
and the exact v is obtained
® Precise shape of dispersion w(k) is =
not known in general

L4 'U:m,?x

welation -y
4

W Cdﬁ%)
2% ™ -2
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Numerical setup: Transverse-field Ising model

Ground-state phase diagram in 2D [R.Kaneko et al.,JPSJ.90.073001(21)]

Disorder

2

h/J

, AR H:—}—JZSij—PZSf—h;Sf

(i3) i

0 0.5 L5

l‘/,/I
For simplicity, focus on h = 0 case
— Map to ferromagnetic model by appropriate unitary transformation

H=-J) 8;S;-T) S
(23) i
Sudden quench from the I' = oo ground state | —»— - -+ —)

quench [p(8)) = e—tHE/H| sy ... _s)
Teip/J = 0.5
I, ['=c Te,2p/J & 1.522

How does the group velocity for spin correlations look?
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Numerical setup: Considered dimensions and methods

Estimate Vexperiment = 2v numerically from peak locations
For comparison, we also consider the 1D case

exact tensor network spin wave approx.

1D | v /(MPS*) v

2D || x /(iPEPS) v

* The data is not shown because it was consistent with the exact result

® 1D, exact

® Jordan-Wigner transformation: Spin — Fermion
® Time-dependent correlations: Pfaffian (= Z£+v/determinant) of the matrix
containing two-body correlations of fermions
® 1D, 2D, spin wave approx.
® Holstein-Primakoff transformation: Spin — Boson (magnon)

® Time-dependent correlations: Function of magnon dispersions
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Numerical results: 1D, exact

C**(r,t) = (P()|575519(1))
CT%(r,t) = (P(B)IST G [0 (8)) — (b(B)ST 1% (1)) (% (£)|55 1% (£))

- x107? 1073 I,/.I:h;n
5.0 256
N r/J =30 5
CHr=11) N\[;,.q\.__~__/_ Corr=1,t) 50
0.0
2.0 0.0
(M L =256 1.0 =28
CHr=2,t) g o (r =2,1) | |
0o (] % 0 75 10 1%
g first peak time £
(e =3,1) n.n/\/\f‘ 15
0.0
Crrr=a,p) 05 N\ E
0.0
5 L =256
oo =51 0 /\
0.0 mJl! 2 1
0.5
C(r =6,1)
0.0
A =70 0.5 ® Light-cone-like spreading of
X A o =7, >
Yy 00 correlations
8 v 0.5 [ . . .
’ oy N o= 8) —/\/\A Group Yelomty of spin-spin
10 YU 0.0 correlations =
Lo ; 0.5 Lieb-Robinson velocity
C=(r=9.t) 0.0 A J y C*(r =9,t) __/\/\/\ _
) ) v/J=1
—1.0 - - 0.0 ( / )
Cr=10.4) l"“ A e Cmtr=10.4) 05 ® Quasiparticles with the
=(r=10,1) 0.0 y rr(p = 10, i .
10 A% - ! " oo fastest propagation velocity
0 5 10 15 20 0 5 10 15 20 are responsible for the
time t.J time t.J spreading of spin-spin
correlations
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Numerical results: 1D, approximate method
Focus on the spin wave approx.

C*Z(r,t) = (¥ (1)|57551%(t))

Co%(r, 1) = (P IST S5 1w (1)) — (D57 [ (£)) (% ()55 1% (8))

50200 2 x10°7 r/J =30
T/J =30 _ = L
D/] =30
C=(r=1,1) [\/\/\/\/\/\/\IV\/\/\/\/V\/V\ ce=r=1, 2O\ !
0.0 4
Crr(r=2,1) -
Cro(r =3,1)
o (r = 4,1)
= (r = 5,1)
C(r=6,1)
0.0
0.5 .
sl AYMY g ®  Accurate up to the point
A : where they begin to increase
C=(r=s8.t) 0. (J—«AAA/\{\/V\/\/\A/\/V C**(r = 8,t) ®  Group v.elo<:|ty of spin-spin
i 1 correlations —
C=r=9.8) 00 ~AAAN (\f A o = 0,1) , Lieb-Robinson velocity
—10 i I Y - (v/J =1)whenT > J
1.0 £ .5
C¥(r =10,1) o.o——-——«\/\/\/\/\/\/\f\/\]\f—\, Crlr =10,1) AN ®  For a small quench
-10 0.0 . e i (C=o0to' > J), few
0 5 10 15 20 oo 0 5 10 15 2 i arti !
— 15w et — 15w time £J quasiparticles are involved,

d SW L d
an approx. is goo 11/19



Numerical results: 2D, spin wave approx.
(should be good for higher dimensions)

C**(r,t) = (P (®)57551%(t))
CT%(r, t) = (P(B)IST G (1)) — (b ()T (1)) (% (£)155 1% (£))

20 x10~2 x10~°
- T/J =90 T/J=90
A v 100.0
C*(r=11) orr=11) NN ACOAA AR KA
0.0 d ; o
10.0
C(r=2.1) it
0.0 et i
Co(r = 3,1)

o2 (r = 4,1)

Coo(r =5,1)

time t.J

time £.J
® ED, Ny=5x5 ——LSWA, N, =128 x 128

PEPS, Dy =8 @ ED, N,=5x5 LSWA, N; = 128 x 128 === PEPS, Dy =8

Agreement is slightly better than in 1D
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Numerical results: 2D, spin wave approx.

distance r

normalized correlation function
C*®(r,t)/ max;e(o,L/(20)] C*% (7, 1) (€ [0,1])

10 20 30
time tJ

Areas of high intensity are not continuously connected
(Complex interference effects in 2D?)

1.00

0.75

0.50

0.25

0.00
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Numerical results: 2D spin wave approx.

distance r

. 2.50
60 T/J=9.0 ? -~ from spin-wave dispersion
I ‘ ;)b 2.00+ ? % longitudinal
= 128 transverse
40 250t EE
g By
2, 1.00F e e EBE"
20 L =128
O longitudinal 0.50F
’ O  transverse
= L L L 0.00 . ’ -
()() 20 40 60 0 2 4 6 8 10
first peak time ¢.J r/J

Light-cone-like spreading of correlations in 2D as well

For T'/J > 1, the group velocity estimated from the peak location is v/J =~ 1
The group velocity estimated from the SW dispersion

Qp = /T2 — ETJv (v = % >D . cosk,, z = 2D, D: dimension) is

vSW/J =1 —J/T + /1 —-2J/T)"1/2//2,
which also approaches v/J = 1 for T'/J > 1
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Numerical results: 2D, iPEPS

0.15
0.10

oo
_= o0
T DOt

le(t]) — e(O)]lJ

= OO =
SOt OUIO Ut O UtoD

)
o
=
ja)
(@

0.00

coo
O =
IO Ut

0.00

r/J=50 2,
—— PEPS, Dy = 5,6,7,8 ) L

T/J = 6.0 7

/g = 710 /
r /g = 8j0 - * -
T/ = 910 : 7 'fr /
0 2 1 6 3

time tJ

The energy is nearly conserved for Dy > 6

in a time frame tJ € [0, 4]
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Numerical results: 2D, iPEPS

cz*

(ryt) = (P()SZ S5 v (1))

CT%(r,t) = (P(B)IST G [0 (8)) — (b (B)ST 19 () (% (£)I155 |4 (£))

C#(r = v/2.1)
—0.5

x10-2

a g T/T=90 [ ]

—— PEPS, Dy = 5. 1..7.5; 0 2 4 6

5x5

® ED N,

time t.J

x10~°
r/J=9.0
Crr =1, 1000,
0.0 I i i
100f ~ N
C*(r =2.t) M::g%—'g
0.0 I !
0.0 .
cor—ap) 1O
0.0 I | _
0.5F
Cr(r = 5,1) J\/
0.0 T | 1 I
25.0F i
C"'(r — ﬁ t) \
0.0 ? -
—— PEPS, Dy =5.6,7,8 0 2 4 6
® ED N.=5x5 time ¢.J

Distances longer than those by the exact diagonalization method are calculable
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Numerical results: 2D, iPEPS

distance r

I
T

e}

I/J =90 o 8
Dun=8 006000090
a Oo0ao o 0 oano
] O 0 0 0 0 0 0 0
B a O longitudinal, r =5 O transverse, r = 5
] a O longitudinal O longitudinal, r=4 L transverse, r = 4
O transverse O longitudinal, r=3 ¢ transverse, r =3
0 1 3 4 5 0'00 2 4 6 8 10
peak time t.J r/J
Since the energy is conserved for a short time, accessible time is limited

Not easy to esitimate the group velocity from iPEPS data

Assume light-cone-like spreading of correlations (as in SW approx.) exists

and the peak localtion eventually grows linearly with the peak time

Estimate v = r/t(r) for each distance r: v/J € [0.86,1.3]
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Comparison of group velocities v/J at T'/J > 1

from from from recent
dispersion peak location inequality™
(fermion or magnon)  (C'##®®(1)) | (any correlations)
1D, exact 1 (exact) 1.0
< 3.02
1D, SW 1.0 1.0
2D, PEPS N/A € [0.86,1.3]
< 5.672
2D, SW 1.0 1.0

* [Z.Wang,K.R.A.Hazzard,PRXQuant.1.010303('20)]

® |n 1D, the spin correlation provides the group velocity corresponding
to the fastest quasiparticle (identical to exact Lieb-Robinson bound)

® |f this is so in 2D as well, LR bound in 2D TFlsing would also be
v/J =1 — Room for improvement in LR bound?
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Conclusions: Ising case

Quench dynamics from the disordered state in 2D transverse-field Ising
model

® Simulation by infinite PEPS using simple update
15F
Dyire =8

- SO OO0 000 O

=0 O0OO0O@o0o0oao

= 60000000
zi 0.5F O longitudinal, r=5 > transverse, r = 5
quench o ol O b
O longitudinal, r =3 ) transverse, r = 3
005 2 1 6 8 10

I“c ['=x r/J

Our estimate of the group velocity: vspin/J ~ 1

This is much smaller than the current best Lieb-Robinson bound:
vLR,horiz/J = 5.672

Our group velocity and spin correlations are helpful for crosschecking
experimental data

R. Kaneko and |. Danshita, Phys. Rev. A 108, 023301 (2023)
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