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Introduction



Analog quantum simulators
Let the nature do the quantum simulations using highly controllable experimental devices

Ultracold atoms in optical lattices
[I.Bloch,Nature.453.1016(’08);

C.Gross,I.Bloch,Science.357.995(’17); W.Hofstet-
ter,T.Qin,J.Phys.B:At.Mol.Opt.Phys.51.082001(’18)]

Rydberg atoms in
optical tweezer arrays

[H.Bernien et al.,Nature.551.579(’17); A.Keesling et
al.,Nature.568.207(’19)]
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|r〉
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|g〉|g〉

δ

Δ

Ω

Ω

Ω

R

B

Trapped ion quantum computers
[R.Blatt,C.F.Roos,Nat.Phys.8.277(’12); E.A.Martinez et

al.,Nature.534.516(’16); M.Gärtner et
al.,Nat.Phys.13.781(’17);

https://physicsworld.com/wp-
content/uploads/2018/12/IonQ-chip.png]

Superconducting quantum circuits
[R.Ma et al.,Nature.566.51(’19); Y.Ye et

al.,PRL.123.050502(’19)]
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What do we want to do using analog quantum simulators?

• Solve problems that are hard to tackle by classical computers
• Prepare the Hamiltonian corresponding to the problem and

obtain the equilibrium state (e.g. the ground state)
• Simulate Schrödinger equation

→ Simulations of isolated quantum many-body systems have
attracted much interest

∗ In experiments, quench is realized by very fast sweep

• In general, simulating time evolution requires all the information of
eigenstates on classical computers
→ It is much harder than the ground-state calculation
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In the case of ultracold atoms on optical lattices...
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In the case of ultracold atoms on optical lattices...
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What do we want to clarify by simulating time evolution?
• How do isolated quantum many-body

systems thermalize?

• What is the upper limit of the information
propagation (= Lieb-Robinson bound)?
cf. In relativistic system:
Upper limit = speed of light

Theoretical investigation is active recently
cf. Light-cone-like behavior in Bose-Hubbard
models
[T.Kuwahara, K.Saito, PRL.127.070403(’21)]

[Y.Takasu et al., sciadv.aba9255(’20)]

Desirable to simulate the dynamics of correlation spreading
to answer these questions

→ Longer-time experimental and numerical simulations are important
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Comparisons between experimental and numerical simulations are desired

Propagation velocities can be obtained from equal-time correlations
• Two characteristic velocities
• Phase velocity
• Group velocity (≤ Lieb-Robinson bound)

envelope of
the wave packetwave packet

phase velocity group velocity

• In 1D, tensor-network
simulations with matrix product
states (MPS) are popular

• e.g. 1D Bose-Hubbard simulator
Correlations after a quench
[M.Cheneau et al.,Nature.481.484(’11)]
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Quasiparticle picture

J U

Dynamics of doublons and holons
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Numerical simulations in 2D are extremely hard

Δ=(0,2)

Δ=(0,1)

Δ=(1,1)

[K.Nagao et al., PRR.3.043091(’21)]

• e.g. Quench dynamics in the 2D Bose-Hubbard model
• Semiclassical approach (truncated Wigner approximation) is not

powerful enough to reproduce the intensity of correlations
• Extend the 1D MPS wave functions to 2D

Examine the accuracy of the 2D tensor-network method
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Motivation

• Numerical simulations of time evolution on classical computers
• Crosscheck and predict experimental results
• Numerical simulations in 2D are extremely hard so far

• Focus on
• 2D Bose-Hubbard model
• 2D transverse-field Ising model
to examine the accuracy of the 2D tensor-network method
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Tensor-network method



Tensor-network states: MPS and PEPS
• Wave function for quantum spin systems:

|ψ〉 =
∑
{si}

Cs1,s2,...,sN |s1, s2, . . . , sN〉 #elements = O(eN )

• In 1D: Matrix product state (MPS)

≃

Ai[si]s1,s2,...,sNC

s1 s2 sN s1 s2 sNsi
• In 2D: Projected entangled pair state (PEPS), tensor product state

virtual
bond

dim. of local
Hilbert space

(spin, boson, ...)

:D

:Dphys

• Dphys = 2S + 1 for spin S
(chosen to be sufficiently large for
soft-core bosons)

• D = 1: direct product state
• D ≥ 2: entangled state
• Wave functions are more

accurate for larger D
• Translational invariant PEPS

can treat infinite systems
[T.Nishino et al.,PTP.105.409(’01); F.Verstraete, J.Cirac, arXiv:cond-mat/0407066]
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Simulating real-time evolution by infinite PEPS
• Real-time evolution of infinite PEPS: |ψ(t)〉 = e−itH |ψ(0)〉

j

t

−iδtHje

=

Time-evolving block decimation in 2D
(= simple update) [comp. cost: O(D5)]
[H.C.Jiang,Z.Y.Weng,T.Xiang(’08); P.Corboz et al.(’10)]

• Calculation of expectation values for infinite PEPS:
environment corner

edge

Corner transfer matrix renormalization
group method [comp. cost O(D10)]
[R.J.Baxter(’68); T.Nishino,K.Okunishi(’96,’97);
R.Orus,G.Vidal(’09)]

• Previous studies on 2D quench dynamics (full update):
e.g. transverse-field Ising model (tr.-field: hx = ∞ → hx

c )
Time . ~/J accessible by increasing bond dimension D
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[A.Kshetrimayum et al.,Nat.Commun.8.1291(’17); P.Czarnik et al.,PRB.99.035115(’19);
C.Hubig,J.I.Cirac,SciPost.Phys.6,031(’19)]
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Quench dynamics in the Bose-Hubbard model

Motivation:
• Reproduce experimental results
• Examine the parameter region that has not been explored



Numerical setup: Wish to calculate |ψ(t)〉 = e−iĤt|ψ0〉
• Square Bose-Hubbard model: Ĥ =

∑
〈ij〉

Ĥij

Ĥij = −J(â†
i
âj + â

†
j
âi) +

U

2z
[n̂i(n̂i − 1) + n̂j(n̂j − 1)] −

µ

z
(n̂i + n̂j) (z = 4)

[V.Murg et al.,PRA(’07); J.Jordan et al.,PRB(’09); A.Kshetrimayum et al.,PRL(’19); S.S.Jahromi and R.Orus,PRB(’19); P.Schmoll et al.,PRL(’20);
W.-L.Tu et al.,JPCM(’20); H.-K.Wu et al.,PRA(’20); P.C.G.Vlaar and P.Corboz et al.,PRB(’21)]

• Simple update by e.g. e−idtĤ/~ ∼
∏
〈ij〉

e
−idtĤij/~

(use second-order Suzuki-Trotter decomposition in practice)
• Very fast (τQ > 0) and sudden (τQ = 0) quenches from Mott insulator ⊗i|ni = 1〉
• Experimental setup: U/J ∼ 100 → 19.6 in τQ = 0.1ms

(U/J = 19.6 > 16.74 = Uc/J : Mott insulating region)
μ/U

J/U

Mott
Insulator Superfluid

n=1

• Use tensor-network library TeNeS
[Y.Motoyama et al., Comp.Phys.Commun.279.108437(’22); https://github.com/issp-center-dev/TeNeS, https://github.com/TsuyoshiOkubo/pTNS]
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Numerical results: Comparison with the experiment at U/J = 19.6

Csp
r (t) =

1

2Ns

∑
ri−rj=r

〈â†
i (t)âj(t) + â

†
j(t)âi(t)〉

• Consider finite quench time as in the experiment
• Nearly conserved energy for 0 ≤ tJ/~ . 0.4
• Physical quantities are likely to be converged for

this short time
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Numerical results: Comparison with the experiment at U/J = 19.6

Csp
r (t) =

1

2Ns

∑
ri−rj=r

〈â†
i (t)âj(t) + â

†
j(t)âi(t)〉

Δ=(0,2)

Δ=(0,1)

Δ=(1,1)

• Consider finite quench time as in the experiment
• Nearly conserved energy for 0 ≤ tJ/~ . 0.4
• Single-particle correlations agree very well
• How about other parameter regions?
• How does the propagation velocity behave?
• Set quench time τQ = 0 hereafter
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Numerical results: Estimate propagation velocities from 〈a†
0ar〉 and 〈n0nr〉

Consider a sudden quench

Energy is conserved for longer time
tJ/~ . 0.9 when U/J ∼ 5

Can capture peaks up to |r| ≤ 3

Csp
r (t) =

1

2Ns

∑
ri−rj=r

〈â†
i (t)âj(t) + â

†
j(t)âi(t)〉

Cdd
r (t) =

1

Ns

∑
ri−rj=r

(〈n̂i(t)n̂j(t)〉 − 1)

• vphase: captured by single-particle correlation 〈a†
0ar〉

• vgroup: captured by density-density correlation 〈n0nr〉
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Numerical results: U dependence of velocity

• For U . zJ (z = 4), single-particle picture (mean-field-like picture) holds
vgroup ∼ 4J/~ [K.Nagao et al.,PRA.99.023622(’19)]

• For U � J , quasi-particle picture holds
vgroup ∼ 6J/~ × [1 + O(J2/U2)] [M.Cheneau et al.,Nature.481.484(’11)]

• vgroup estimated from 〈n0nr〉 consistent with
• single-particle group velocity deep in superfluid region
• strong-coupling result near criticality

• vphase and vgroup gradually converge to the same value as U/J is decreased
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Conclusions: Bose-Hubbard case
• Quench dynamics from Mott insulator in 2D Bose-Hubbard model
• Simulation by infinite PEPS using simple update
• Compare PEPS simulations with experiments

→ Good agreement for tJ/~ . 0.4 at U/J = 19.6
μ/U

J/U

Mott
Insulator Superfluid

n=1

time

J/U quench

• Estimate velocity of correlation spreading for smaller U/J

vphase and vgroup gradually converge
to the same value as U/J is decreased

Might be helpful for future experiments

R. Kaneko and I. Danshita, Commun. Phys. 5, 65 (2022)
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Quench dynamics in the 2D transverse-field Ising model

Motivation:
• How good is the 2D tensor-network method in this case?
• How does the group velocity for spin correlations look?

(Compare with the recently updated Lieb-Robinson bound)



Analog quantum simulations of the quantum Ising model
by Rydberg-atom arrays

[H.Bernien et al.,Nat.551.579(’17); A.Keesling et al.,Nat.568.207(’19);
E.Guardado-Sanchez et al.,PRX.8.021069(’18); V.Lienhard et al.,PRX.8.021070(’18);

D.Bluvstein et al.,Science.371.1355(’21); P.Scholl et al.,Nat.595.233(’21); S.Ebadi et al.,Nat.595.227(’21); …]

H = Ω
∑
i

Sxi − ∆
∑
i

ni + V
∑
〈ij〉

ninj

(
ni = Szi +

1

2
, D : dim.

)

= Ω
∑
i

Sxi − (∆ − V D)
∑
i

Szi + V
∑
〈ij〉

Szi S
z
j +

∑
i

(
V D

4
−

∆

2

)
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Rydberg atoms quantum Ising model
bases |g〉, |r〉 |↓〉, |↑ 〉
Ω Rabi frequency transverse field
∆ detuning longitudinal field
V van der Waals interaction Ising spin interaction

Δ/V

Ω/V

Very recently, real-time dynamics for # qubits > 200
How does information propagate?
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Numerical results: 2D, iPEPS
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x
0 |ψ(t)〉 − 〈ψ(t)|Ŝx
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Distances longer than those by the exact diagonalization method are calculable
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Conclusions
• Simulating the dynamics of 2D systems by the tensor-network method with iPEPS
• Focus on the quench in the 2D Bose-Hubbard and transverse-field Ising models

Bose-Hubbard case

• Good agreement with the experiment

• Examine the parameter region that has
not been explored

R. Kaneko and I. Danshita,
Commun. Phys. 5, 65 (2022)

Ising case

• Group velocity satisfies the
Lieb-Robinson bound
(but the value is much smaller than
the bound)

0 2 4 6 8 10
Γ/J

0.0

0.5

1.0

1.5

v
gr

ou
p
(r

)/
J

Dvirt = 8

longitudinal, r = 5

longitudinal, r = 4

longitudinal, r = 3

transverse, r = 5

transverse, r = 4

transverse, r = 3

• vspin/J ≈ 1 both in 1D and 2D
• Recent estimate vLR/J = 5.672 is

still loose?

• Provide numerical data that can be
compared with future experiments

R. Kaneko and I. Danshita,
Phys. Rev. A 108, 023301 (2023)
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Quench dynamics in the 2D transverse-field Ising model

Motivation:
• How good is the 2D tensor-network method in this case?
• How does the group velocity for spin correlations look?

(Compare with the recently updated Lieb-Robinson bound)



Analog quantum simulations of the quantum Ising model
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Lieb-Robinson bound:
Upper limit of group velocity for any correlations

• Consider regions A and B in a lattice system with short-range interaction
• Commutator of any operators OA and OB in regions A and B satisfies

||[OA(t), OB]|| ≤ const.× exp

(
−
L− vt

ξ

)
• OA(t) = eiHtOAe

−iHt, L: distance between A and B, ξ: const.
• v: Lieb-Robinson bound

• Information from A is transmitted to B up to t ∼ L/v
• It tells the presence of bound, but not the value itself
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Light-cone-like spreading of time-dependent correlations
• Corollary: For a state with finite correlation length ξ

• Bound for any equal-time correlations:
[S.Bravyi et al.,PRL.97.050401(’06)]

|〈OA(t)OB(t)〉 − 〈OA(t)〉〈OB(t)〉| ≤ const.× e
−L−2vt

ξ

• Velocity v: Lieb-Robinson bound
• Exact Lieb-Robinson bound is known only for a few lattice models

(e.g. 1D systems)
• Lieb-Robinson bound gets tighter very recently

[Z.Wang,K.R.A.Hazzard,PRXQuant.1.010303(’20)]
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How to get/estimate Lieb-Robinson velocity
• Bound for any equal-time correlations: [S.Bravyi et al.,PRL.97.050401(’06)]

|〈OA(t)OB(t)〉 − 〈OA(t)〉〈OB(t)〉| ≤ const.× e
−L−2vt

ξ

• Intuitively, prefactor 2 comes from left and right moving quasiparticles

From dispersion

• v = max
k

dω(k)

dk
• In 1D TFIsing, ω(k) is exactly known

and the exact v is obtained
• Precise shape of dispersion ω(k) is

not known in general

From peak localtions in correlations
• vexperiment = 2v
• Useful in experiments

7 / 19



Numerical setup: Transverse-field Ising model
• Ground-state phase diagram in 2D [R.Kaneko et al.,JPSJ.90.073001(’21)]
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h
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AF order

Disorder

H = +J
∑
〈ij〉

Szi S
z
j − Γ

∑
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∑
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• For simplicity, focus on h = 0 case
→ Map to ferromagnetic model by appropriate unitary transformation

H = −J
∑
〈ij〉

Sz
i S

z
j − Γ

∑
i

Sx
i

• Sudden quench from the Γ = ∞ ground state | →→ · · · →〉

Γ=∞Γc

quench |ψ(t)〉 = e−iHt/~| →→ · · · →〉

Γc,1D/J = 0.5
Γc,2D/J ≈ 1.522

• How does the group velocity for spin correlations look?
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Numerical setup: Considered dimensions and methods

Estimate vexperiment = 2v numerically from peak locations
For comparison, we also consider the 1D case

exact tensor network spin wave approx.

1D 3 3(MPS∗) 3

2D 5 3(iPEPS) 3

∗ The data is not shown because it was consistent with the exact result

• 1D, exact
• Jordan-Wigner transformation: Spin → Fermion
• Time-dependent correlations: Pfaffian (= ±

√
determinant) of the matrix

containing two-body correlations of fermions

• 1D, 2D, spin wave approx.
• Holstein-Primakoff transformation: Spin → Boson (magnon)
• Time-dependent correlations: Function of magnon dispersions
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Numerical results: 1D, exact
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• Light-cone-like spreading of
correlations

• Group velocity of spin-spin
correlations =
Lieb-Robinson velocity
(v/J = 1)

• Quasiparticles with the
fastest propagation velocity
are responsible for the
spreading of spin-spin
correlations
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Numerical results: 1D, approximate method
Focus on the spin wave approx.
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0 |ψ(t)〉
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• Accurate up to the point
where they begin to increase

• Group velocity of spin-spin
correlations →
Lieb-Robinson velocity
(v/J = 1) when Γ � J

• For a small quench
(Γ = ∞ to Γ � J), few
quasiparticles are involved,
and SW approx. is good
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Numerical results: 2D, spin wave approx.
(should be good for higher dimensions)
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r Ŝ

z
0 |ψ(t)〉
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xx

(r, t) = 〈ψ(t)|Ŝx
r Ŝ

x
0 |ψ(t)〉 − 〈ψ(t)|Ŝx

r |ψ(t)〉〈ψ(t)|Ŝx
0 |ψ(t)〉
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Agreement is slightly better than in 1D
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Numerical results: 2D, spin wave approx.
normalized correlation function

Cxx(r, t)/maxt∈[0,L/(2J)] C
xx(r, t) (∈ [0, 1])
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Areas of high intensity are not continuously connected
(Complex interference effects in 2D?)
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Numerical results: 2D spin wave approx.
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• Light-cone-like spreading of correlations in 2D as well
• For Γ/J � 1, the group velocity estimated from the peak location is v/J ≈ 1

• The group velocity estimated from the SW dispersion
Ωk =

√
Γ2 − z

2
ΓJγk (γk = 1

D

∑D
ν=1 cos kν , z = 2D, D: dimension) is

vSW/J = (1 − J/Γ +
√

1 − 2J/Γ)−1/2/
√

2,
which also approaches v/J ≈ 1 for Γ/J � 1
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Numerical results: 2D, iPEPS
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The energy is nearly conserved for Dvirt ≥ 6
in a time frame tJ ∈ [0, 4]
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Numerical results: 2D, iPEPS
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r Ŝ

z
0 |ψ(t)〉
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0 |ψ(t)〉 − 〈ψ(t)|Ŝx
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Distances longer than those by the exact diagonalization method are calculable
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Numerical results: 2D, iPEPS
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• Since the energy is conserved for a short time, accessible time is limited
• Not easy to esitimate the group velocity from iPEPS data
• Assume light-cone-like spreading of correlations (as in SW approx.) exists

and the peak localtion eventually grows linearly with the peak time
• Estimate v = r/t(r) for each distance r: v/J ∈ [0.86, 1.3]
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Comparison of group velocities v/J at Γ/J � 1

from
dispersion

(fermion or magnon)

from
peak location
(Czz,xx(r))

from recent
inequality∗

(any correlations)

1D, exact

1D, SW

1 (exact)

1.0

1.0

1.0

≤ 3.02

2D, PEPS

2D, SW

N/A

1.0

∈ [0.86, 1.3]

1.0

≤ 5.672

∗ [Z.Wang,K.R.A.Hazzard,PRXQuant.1.010303(’20)]

• In 1D, the spin correlation provides the group velocity corresponding
to the fastest quasiparticle (identical to exact Lieb-Robinson bound)

• If this is so in 2D as well, LR bound in 2D TFIsing would also be
v/J = 1 → Room for improvement in LR bound?
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Conclusions: Ising case
• Quench dynamics from the disordered state in 2D transverse-field Ising

model
• Simulation by infinite PEPS using simple update

Γ=∞Γc

quench

0 2 4 6 8 10
Γ/J

0.0
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gr
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)/
J

Dvirt = 8

longitudinal, r = 5

longitudinal, r = 4

longitudinal, r = 3

transverse, r = 5

transverse, r = 4

transverse, r = 3

• Our estimate of the group velocity: vspin/J ∼ 1

• This is much smaller than the current best Lieb-Robinson bound:
vLR,horiz/J = 5.672

• Our group velocity and spin correlations are helpful for crosschecking
experimental data

R. Kaneko and I. Danshita, Phys. Rev. A 108, 023301 (2023)
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