Two-dimensional two-color lattice QCD with Grassmann tensor renormalization group

Tensor Network 2025 @ 筑波大学 東京キャンパス

16th July 2025

Presenter: Ho Pai KWOK

Collaborators: Shinichiro Akiyama, Synge Todo

Grassmann TRG approach to lattice field theories

- Tensor network methods are gaining attractions in the research of lattice field theories because they are free from the sign problem, allowing direct simulation at finite density
- Lagrangian approach:
 - Tensor network representation for the partition function
 - > TRG algorithm to contract the tensor network
- Grassmann tensor formulation:

Occupation: 0 or 1

$$\mathcal{T}_{i,j,k} = T_{i,j,k} \,\theta_1^{f(i)} \,\theta_2^{f(j)} \,\theta_3^{f(k)}$$

Tensor Renormalization Group (TRG) [Levin, M., & Nave, C. P. (2007). PRL, 99(12), 120601]

[Akiyama, S., Meurice, Y., & Sakai, R. (2024). Journal of Physics: Condensed Matter, 36(34), 343002.]

$$\mathcal{Y}_{i,j,l,m} = \mathcal{T}_{i,j,k} \mathcal{G}_{k,l,m}$$
of Physics: Condense

$$\equiv \sum_{k} \int d\eta_1 d\theta_3 e^{-\eta_1 \theta_3} T_{i,j,k} G_{k,l,m} \theta_1^{f(i)} \theta_2^{f(j)} \overline{\theta_3^{f(k)} \eta_1^{f'(k)}} \eta_2^{f'(l)} \eta_3^{f'(m)}$$

$$= Y_{i,j,l,m} \theta_1^{f(i)} \theta_2^{f(j)} \eta_2^{f'(l)} \eta_3^{f'(m)}$$
[Shimizu, Y., & Kuramashi, Y., PRD
[Kanno, H.+, arXiv:2412.08959] [

1

Applications to lattice field theories:

[Shimizu, Y., & Kuramashi, Y., PRD 90.1 (2014): 014508]
[Kanno, H.+, arXiv:2412.08959] [Akiyama, S.+, JHEP 2021(1), 1-17]
[Shimizu, Y., & Kuramashi, Y., PRD 90.7 (2014): 074503.]
[Takeda, S., & Yoshimura, Y., PTEP 2015(4), 043B01]
[Yosprakob, A+, JHEP 2023(11), 1-32]
[Bloch, J. & Lohmayer, R., Nucl. Phys. B 986 (2023) 116032]
[Asaduzzaman, M. +, JHEP 05 (2024) 195] ...

(1+1)-D lattice two-color QCD with staggered fermions

What we calculate with TRG

$$Z = \int \mathcal{D}U \mathcal{D}\chi \mathcal{D}\bar{\chi} \,\mathrm{e}^{-S}$$

Parameters: m, β, μ, λ

- Wilson's gauge action $S = S_f + S_g + S_\lambda$
 - Fermion hopping term + mass term

Diquark source term

$$S_{\lambda} = \frac{\lambda}{2} \sum_{n} \left[\chi^{T}(n) \sigma_{2} \chi(n) + \bar{\chi}(n) \sigma_{2} \bar{\chi}^{T}(n) \right]$$
$$\langle \chi \chi \rangle \equiv \frac{1}{2V} \int \mathcal{D}U \mathcal{D}\chi \mathcal{D}\bar{\chi} \sum_{n} \left(\chi^{T} \sigma_{2} \chi + \bar{\chi} \sigma_{2} \bar{\chi}^{T} \right) e^{-S}$$

Phase structure of the (3+1)-D theory

[Y. Nishida+, Phys. Rept. 398 (2004) 281–300]

- Finite diquark condensate due to the SSB of U(1) symmetry
- Lattice artifact comes into play at large chemical potential

(3+1)-D infinite coupling two-color QCD with staggered fermions

Tensor network representation

- $Z = \int \mathcal{D}U \mathcal{D}\chi \mathcal{D}\bar{\chi} \, \mathrm{e}^{-S}$
- The fermion determinant can be expressed as the trace of a Grassmann tensor network by re-writing every hopping term in the lattice action into a Grassmann integral of two auxiliary Grassmann fields
 - Fermionic bond dimension: 2^{2(number of color)}

[Akiyama, S., & Kadoh, D., JHEP, 2021(10), 1-16]

[M. Asaduzzaman+, JHEP 05 (2024) 195]: **2**^{2(number of color)²}

- The Grassmann tensor network in this step depends on the configuration of the gauge fields.
 However, the gauge group integration can be done exactly in the infinite coupling limit.
- At finite couplings, the gauge group integration is approximated by a summation of terms where the integrand is evaluated using group elements sampled uniformly from the group manifold [Fukuma, M.+, PTEP, 2021(12),123B03]

$$\int \mathrm{d} U \, f(U) \simeq \frac{1}{K} \sum_{i=1}^{K} f(U_i)$$

- The trace of the resulting Grassmann tensor network approximates the partition function
- \succ The bond dimension of the initial tensors is 16K

Initial tensor compression

- We use <u>bond-weighted tensor renormalization group</u> to coarse-grain the tensor network and reach the thermodynamic limit
- The choice of bond dimension cutoff *D* in TRG algorithms depends on the bond dimension of initial tensors.
 For our case (two-color QCD), the initial bond dimension can have an order of 10² (=16K)
- Compression of initial tensors is needed before TRG:

insert a pair of squeezers (a good approximation of identity) on every bond of the tensor network

• The insertion of squeezers is equivalent to a truncated SVD on the following rank 6 tensor

How to determine the bond dimension after compression (how many singular values are kept)?

Efficiency of compression

N = no. of color <u>K</u> = sample size

m = 0.1	$1, \beta =$	= 1.6,	$\mu =$	0.4,	$\lambda = 0, \ K = 14$
r	D_1'	D_2^{\prime}	D_3^{\prime}	D_4^{\prime}	compression rate
1	224	224	224	224	100%
0.99999	148	148	143	143	17.8%
0.99995	122	122	118	118	8.23%
0.9999	110	110	105	105	5.30%
0.9995	80	80	79	79	1.59%
0.999	70	70	67	67	0.874%
0.99	35	35	33	$\overline{33}$	0.0530%

$$m = 0.1, \ \beta = 0.8, \ \mu = 0.4, \ \lambda = 0, \ K = 14$$

r	D'_1	D_2^{\prime}	D_3^{\prime}	D_4^{\prime}	compression rate
1	224	224	224	224	100%
0.99999	86	86	84	84	2.07%
0.99995	68	68	66	66	0.800%
0.9999	61	61	59	59	0.514%
0.9995	46	46	43	43	0.155%
0.999	39	39	37	37	0.0827%
0.99	19	19	19	19	0.00518%

Accuracy of compression

Free energy density:

 $f = \ln Z/V$ What we calculate directly with TRG

Remarks:

- We always consider finite m and/or λ , which breaks the U(1) symmetries explicitly
- Otherwise, chiral condensate and diquark condensate cannot have a finite value in 2D

@ m = 0.1: an intermediate phase is observed in a finite region of μ

@ m = 1: a sharp transition is seen, and the intermediate phase becomes a very narrow region in μ

The qualitative behavior of the observables in 2D (with explicitly broken symmetries) is like the one reported in a mean-field study of the (3+1)-D theory, where spontaneous symmetry breaking occurs
[Y. Nishida+, Phys. Rept. 398 (2004) 281–300]

- The behavior at finite coupling is like that at infinite coupling
- As β becomes nonzero, the intermediate phase becomes broader at m = 0.1

 $\beta = 0$ $0.22 \le \mu \le 0.46$ $\beta = 0.8$ $0.22 \le \mu \le 0.52$

β dependence of transition points

- The first transition point (the one at a smaller μ) seems to be robust against β
- The second transition point locates at larger chemical potential as β increases
- (n) does not saturate in regions of larger chemical potential as the gauge interaction is weakened, approaching the continuum limit

Summary

- This is a TRG study on non-Abelian gauge theory coupled with standard staggered fermions at finite density and finite coupling
- Tensor network calculation for this kind of theories is computationally challenging because of the very large initial bond dimension
- We introduce an efficient initial tensor compression scheme to deal with this issue
- TRG enables the calculation of important physical quantities at the infinite coupling limit and finite β regime
- Future directions:
 - 1) TRG calculations of multi-flavor theories
 - 2) Higher-dimensional calculations
 - 3) More detailed study on the intermediate phase

