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Grassmann TRG approach to lattice field theories

Tensor network methods are gaining attractions in the research of lattice field theories because they are free
from the sign problem, allowing direct simulation at finite density

Lagrangian approach:

> Tensor network representation for the partition function
» TRG algorithm to contract the tensor network

Grassmann tensor formulation: Occupation: 0 or 1
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(1+1)-D lattice two-color QCD with staggered fermions

What we calculate with TRG o Wilson’s gauge action Diquark source term
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Phase structure of the (3+1)-D theory
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[Y. Nishida+, Phys. Rept. 398 (2004) 281-300] (3+1)-D infinite coupling two-color QCD with staggered fermions




Tensor network representation

 The fermion determinant can be expressed as the trace of a Grassmann tensor network by re-writing every
hopping term in the lattice action into a Grassmann integral of two auxiliary Grassmann fields

[Akiyama, S., & Kadoh, D., JHEP, 2021(10), 1-16]
> Fermionic bond dimension: 22(number of color)

2
[M. Asaduzzaman+, JHEP 05 (2024) 195]; 22(number of color)

» The Grassmann tensor network in this step depends on the configuration of the gauge fields.
However, the gauge group integration can be done exactly in the infinite coupling limit.

» At finite couplings, the gauge group integration is approximated by a summation of terms where the integrand is
evaluated using group elements sampled uniformly from the group manifold [Fukuma, M.+, PTEP, 2021(12),123B03]
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[Adachi, D.+, PRB, 105(6), L060402 (2022)] N = no. of color
[Akiyama, S., JHEP, 2022(11), 1-14] K= samp/e size

Initial tensor compression

« We use bond-weighted tensor renormalization group to coarse-grain the tensor network and reach the
thermodynamic limit

» The choice of bond dimension cutoff D in TRG algorithms depends on the bond dimension of initial tensors.
For our case (two-color QCD), the initial bond dimension can have an order of 102 (=16K)

« Compression of initial tensors is needed before TRG:
Dy : : insert a pair of d imation of
N — O O— T ~ insert a pair of squeezers (a good approximation o
identity) on every bond of the tensor network

* The insertion of squeezers is equivalent to a truncated SVD on the following rank 6 tensor
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Efficiency of compression

N = no. of color

K =sample size
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Accuracy of
compression

m=20.1, =16, p0=04, AX=0, K =14
r D'1 D; Dé D:l compression rate
4 1 224 224 224 224 100%
0.99999 || 148 148 143 143 17.8%
0.99995 || 122 122 118 118 8.23%
0.9999 || 110 110 105 105 5.30%
0.9995 || 80 80 79 79 1.59%
0.999 70 70 67 67 0.874%
0.99 35 35 33 33 0.0530%

Initial bond dimension

m=01, =08, p=04, A\=0, K =14

r D’1 sz Dé D; compression rate
1 224 224 224 224 100%
0.99999 || 86 86 84 &4 2.07%
0.99995 || 68 68 66 66 0.800%
0.9999 || 61 61 59 59 0.514%
0.9995 || 46 46 43 43 0.155%
0.999 39 39 37 37 0.0827%
0.99 19 19 19 19 0.00518%




Calculation of observables

Free energy density:

f=InZ/V  Whatwe calculate directly with TRG

Quark number density: Chiral condensate: Diquark condensate:

_of _ fp+Ap)— f(p) . of _ flm+Am)—f(m) _of JAEAN = f(N)
(n) = o = Au () =5~ = Ao ) = 57 = N
Ap = 0.04 for m = 0.1 Am = 10~ A=AN=10"4

Ap=0.02 form=1

Remarks:
We always consider finite m and/or A, which breaks the U(1) symmetries explicitly

Otherwise, chiral condensate and diquark condensate cannot have a finite value in 2D




Initial bond dimension is 16

Numerical results: infinite coupling limit o L e s [Ere

m = 0.1. 3 —0.V = 2201 D =84 m = 1, 3 =0,V = 220, D =84

iz 1

@ m =0.1: an intermediate phase is observed in a @ m = 1: a sharp transition is seen, and the intermediate
finite region of u phase becomes a very narrow region in

« The qualitative behavior of the observables in 2D (with explicitly broken symmetries) is like the one reported in a
mean-field study of the (3+1)-D theory, where spontaneous symmetry breaking occurs
[Y. Nishida+, Phys. Rept. 398 (2004) 281-300]



Numerical results: f = 0.8

m=01,8=08 V=20 K =14, D =150
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* The behavior at finite coupling is like that at infinite coupling
 As [ becomes nonzero, the intermediate phase becomes broader at m=0.1

=0 022<u<046 f =0.8

0.22 <u<0.52




p dependence of transition points

number density, m = 0.1, V =22 K =14
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The first transition point (the
one at a smaller 1) seems to be
robust against §

The second transition point
locates at larger chemical
potential as S increases

(n) does not saturate in regions
of larger chemical potential as
the gauge interaction is
weakened, approaching the
continuum limit



Summary

 This is a TRG study on non-Abelian gauge theory coupled with standard staggered fermions at finite density and
finite coupling

* Tensor network calculation for this kind of theories is computationally challenging because of the very large
initial bond dimension

 We introduce an efficient initial tensor compression scheme to deal with this issue

* TRG enables the calculation of important physical quantities at the infinite coupling limit and finite g regime

* Future directions:
1) TRG calculations of multi-flavor theories
2) Higher-dimensional calculations
3) More detailed study on the intermediate phase

Thank you for listening!
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