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Grassmann TRG approach to lattice field theories

• Tensor network methods are gaining attractions in the research of  lattice field theories because they are free 

from the sign problem, allowing direct simulation at finite density

• Lagrangian approach:

Tensor Renormalization Group (TRG)
[Levin, M., & Nave, C. P. (2007). PRL, 99(12), 120601]

➢ Tensor network representation for the partition function

➢ TRG algorithm to contract the tensor network

• Grassmann tensor formulation: Occupation: 0 or 1

• Applications to lattice field theories:

[Akiyama, S., Meurice, Y., & Sakai, R. (2024). Journal 

of  Physics: Condensed Matter, 36(34), 343002.]

[Shimizu, Y., & Kuramashi, Y., PRD 90.1 (2014): 014508]  

[Kanno, H.+, arXiv:2412.08959]   [Akiyama, S.+, JHEP 2021(1), 1-17] 

[Shimizu, Y., & Kuramashi, Y., PRD 90.7 (2014): 074503.] 

[Takeda, S., & Yoshimura, Y., PTEP 2015(4), 043B01] 

[Yosprakob, A+, JHEP 2023(11), 1-32] 

[Bloch, J. & Lohmayer, R., Nucl. Phys. B 986 (2023) 116032] 

[Asaduzzaman, M. +, JHEP 05 (2024) 195] …



(1+1)-D lattice two-color QCD with staggered fermions

What we calculate with TRG

Fermion hopping term 

+ mass term

Wilson’s gauge action Diquark source term

Phase structure of  the (3+1)-D theory

Parameters: 𝑚,𝛽, 𝜇, 𝜆

[Y. Nishida+, Phys. Rept. 398 (2004) 281–300] (3+1)-D infinite coupling two-color QCD with staggered fermions

Bare quark mass = 0.02 • Finite diquark condensate 

due to the SSB of  U(1) 

symmetry

• Lattice artifact comes into 

play at large chemical 

potential



Tensor network representation

• The fermion determinant can be expressed as the trace of  a Grassmann tensor network by re-writing every 
hopping term in the lattice action into a Grassmann integral of  two auxiliary Grassmann fields

[Akiyama, S., & Kadoh, D., JHEP, 2021(10), 1-16]
➢ Fermionic bond dimension: 22(number of  color)

➢ The Grassmann tensor network in this step depends on the configuration of  the gauge fields. 

However, the gauge group integration can be done exactly in the infinite coupling limit.

• At finite couplings, the gauge group integration is approximated by a summation of  terms where the integrand is 

evaluated using group elements sampled uniformly from the group manifold

Sample size

[Fukuma, M.+, PTEP, 2021(12),123B03]

➢ The trace of  the resulting Grassmann tensor 

network approximates the partition function

➢ The bond dimension of  the initial tensors is 16K

[M. Asaduzzaman+, JHEP 05 (2024) 195]: 22(number of  color)
2



Initial tensor compression

• We use bond-weighted tensor renormalization group to coarse-grain the tensor network and reach the 

thermodynamic limit

• The choice of  bond dimension cutoff  D in TRG algorithms depends on the bond dimension of  initial tensors. 

For our case (two-color QCD), the initial bond dimension can have an order of  102 (=16K)

• Compression of  initial tensors is needed before TRG: 

[Adachi, D.+, PRB, 105(6), L060402 (2022)]

[Akiyama, S., JHEP, 2022(11), 1-14]

How to determine the bond dimension after compression 

(how many singular values are kept)?

Initial bond dimension

Bond dimension after compression

Ratio parameter

insert a pair of  squeezers (a good approximation of  

identity) on every bond of  the tensor network

• The insertion of  squeezers is equivalent to a truncated SVD on the following rank 6 tensor

N = no. of  color

K = sample size



Efficiency of  compression

Initial bond dimension

Bond dimension after compression

Ratio parameter

Accuracy of  

compression

N = no. of  color

K = sample size



Calculation of  observables

Free energy density:

What we calculate directly with TRG

Quark number density: Chiral condensate: Diquark condensate:

Remarks:

• We always consider finite 𝑚 and/or 𝜆, which breaks the U(1) symmetries explicitly

• Otherwise, chiral condensate and diquark condensate cannot have a finite value in 2D 



Numerical results: infinite coupling limit
Initial bond dimension is 16 

no initial tensor compression here

• The qualitative behavior of  the observables in 2D (with explicitly broken symmetries) is like the one reported in a 

mean-field study of  the (3+1)-D theory, where spontaneous symmetry breaking occurs

@ m = 0.1: an intermediate phase is observed in a 

finite region of  𝜇
@ m = 1: a sharp transition is seen, and the intermediate 

phase becomes a very narrow region in 𝜇

[Y. Nishida+, Phys. Rept. 398 (2004) 281–300]



Numerical results: 𝜷 = 𝟎. 𝟖

• The behavior at finite coupling is like that at infinite coupling

• As 𝛽 becomes nonzero, the intermediate phase becomes broader at m = 0.1

𝛽 = 0 0.22 ≤ 𝜇 ≤ 0.46 𝛽 = 0.8 0.22 ≤ 𝜇 ≤ 0.52

K = 14



𝜷 dependence of  transition points

• The first transition point (the 

one at a smaller 𝜇) seems to be 

robust against 𝛽

• The second transition point 

locates at larger chemical 

potential as 𝛽 increases

• 𝑛  does not saturate in regions 

of  larger chemical potential as 

the gauge interaction is 

weakened, approaching the 

continuum limit

as 𝛽 increases



Summary

• This is a TRG study on non-Abelian gauge theory coupled with standard staggered fermions at finite density and 

finite coupling

• Tensor network calculation for this kind of  theories is computationally challenging because of  the very large 

initial bond dimension

• We introduce an efficient initial tensor compression scheme to deal with this issue

• TRG enables the calculation of  important physical quantities at the infinite coupling limit and finite 𝛽 regime

• Future directions: 

1) TRG calculations of  multi-flavor theories

2) Higher-dimensional calculations

3) More detailed study on the intermediate phase

Thank you for listening!
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