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Quantum entanglement

The non-local correlation between subsystems of a quantum many-body

system.

Wide applications in various topics:

Critical phenomena

Geometry of spacetime

Quantum circuits

Various measures have been proposed:

entanglement entropy, Rényi entropy, mutual information, etc.

2 / 30



Entanglement negativity E [Vidal-Werner, 2002]

Measure of the quantum entanglement between two subsystems A1, A2.

A = A1 ∪ A2 can be in a mixed state!

E ≡ log ∥ρT2
A ∥ = log tr|ρT2

A |
𝐴! 𝐴"

𝐴
�̅��̅�

∥M∥: Sum of absolute values of eigenvalues of the matrix M (trace norm).

ρA = trĀρ: The reduced density matrix of the subsystem A = A1 ∪ A2.

T2: The partial transpose with respect to subsystem A2.

(ρA)(I1I2)(J1J2) = (ρT2
A )(I1J2)(J1I2)
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Replica trick

Like the entanglement entropy, the entanglement negativity can be

computed using the replica trick:

E = lim
ne→1

log tr
(
ρT2
A

)ne
,

where ne = 2, 4, 6, . . . .
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Why entanglement negativity?

EN allows us to probe quantum correlations in mixed states.

(Mutual information cannot exclusively capture quantum correlations.)

EN can be a useful probe for analyzing phase transitions in

finite-temperature systems, such as QGP phase transition.

We take advantage of the tensor renormalization group (TRG) approach to

compute EN.
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TRG approach [Levin-Nave, 2006]

Coarse-graining of a given tensor network based on the idea of the

real-space renormalization group.

Sign problem free.

Direct evaluation of the path integral (=density matrix).

No replica trick required.

Applicable to higher-dimensional systems.

(Computationally expensive for higher dimensions, but still feasible.)
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Tensor network representation of ρ

For example, We consider the density matrix ρ = e−βH/Z of a Gibbs state.

For small ∆β, e−∆βH ∼ 1−∆βH is a local

operator acting on each lattice site.

Tensors are locally connected to each other

since the Hamiltonian H is local.

Periodic boundary condition is imposed.

⋮
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Tensor network representation of ρ

Since e−βH = limN→∞ e−β/NH , e−βH is a

product of local operators e−∆βH , where

∆β = β/N .

If we consider the d-dimensional quantum

system, ρ is represented as a

(d+ 1)-dimensional tensor network.

⋮ ⋮ ⋮ ⋮⋮

𝑁

𝑡

𝑥
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Tensor network representation of ρA

The reduced density matrix ρA is obtained by

tracing out the indices corresponding to the

complementary subsystem Ā.

⋮ ⋮ ⋮ ⋮⋮

⋮ ⋮ ⋮ ⋮⋮𝐴

�̅�
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Partial transpose ρT2A

We can swap the indices of the

subsystem A2 in ρA to obtain the partial

transpose ρT2
A .

(ρT2
A )(I1J2)(J1I2) = (ρA)(I1I2)(J1J2)

⋮ ⋮ ⋮ ⋮⋮

⋮

⋮

⋮ ⋮

⋮

𝐴

�̅�

⋮

{𝐼!}

{𝐼"}

{𝐽!}

{𝐽"}
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Tensor network representation of the partition function

Of course, tracing out all the indices of ρ gives

the partition function Z = trρ. ⋮ ⋮ ⋮ ⋮⋮
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Higher-Order TRG algorithm [Xie et al., 2012]

We use the HOTRG algorithm for coarse-graining tensor networks.

𝑇
𝑈 𝑈! 𝑇"

𝑀

𝐷

𝐷!"#

Isometry matrix U diagonalizes the matrix MM †, and contains the Dcut

largest eigenvalues of MM †.
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HOTRG algorithm [Xie et al., 2012]

𝑇
𝑈 𝑈! 𝑇"

𝑀

𝐷

𝐷!"#

Note that

=

≠
since the isometry matrix U is a submatrix of a unitary matrix.
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Coarse-graining of ρT2A

For example, we consider the reduced density matrix ρA shown below.

�̅�

𝐴!

𝐴"
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First set of coarse-graining

Apply the HOTRG algorithm once in both time and space directions.

�̅�

𝐴!

𝐴"
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Second set of coarse-graining

Apply the HOTRG algorithm twice in both time and space directions.

�̅�

𝐴!

𝐴"
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Further simplification

Using U †U = 1, we can simplify the lower part of the network.

𝐴!

𝐴"
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”Trimming” the network

Isometry matrices with two open indices do not contribute to the final result.

�̅�

𝐴!

𝐴"
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Final form of the network

Two sets of renormalization + simplification + trimming gives us the following

network:

�̅�

𝐴!

𝐴"𝐼"

𝐼!

𝐽"

𝐽!

This network gives (ρT2
A )(I1J2)(J1I2). 19 / 30



Numerical test

We consider the one-dimensional quantum Ising model

H = −J
∑
⟨i,j⟩

σz
i σ

z
j − hx

∑
i

σx
i ,

at criticality hx = J and T = 0.

We map the 1d quantum Ising model to the (1+1)d classical isometric Ising

model at Tcl = Tc.
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Numerical test

We focus on the entanglement between two adjacent intervals A1, A2 in a

larger system of size L with periodic boundary conditions.

!! !"

!
!̅!̅

We fix the size of the subsystem such that ℓ1 = ℓ2 = 1/4L, and compute

the entanglement negativity for various ℓ1.
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Entanglement negativity at criticality
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Analytic result:

[Calabrese et al., 2013]

E =
c

4
log

(
ℓ1
π

)
+ k.

Fitting result for 8 ≤ ℓ1 ≤ 128:

c = 0.4966(9)

Theoretical value c = 0.5 is

reproduced.
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Replica vs direct calculation at Dcut = 128
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We extrapolate E to ne = 1 for each

ℓ1 = 1, 2, 4, . . . .

Fitting result for 8 ≤ ℓ1 ≤ 128:

c = 0.47(2)

cf. direct calculation results:

c = 0.44(1) (Dcut = 16)

c = 0.482(3) (Dcut = 32)
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Conclusion and future prospects

Results

We have computed the entanglement negativity of the one-dimensional

quantum Ising model at criticality with TRG approach.

Our result is consistent with known results, confirming the validity of our

calculations.

Our results implies the potential advantage of the TRG approach for

computing entanglement negativity over the Monte Carlo method.
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Conclusion and future prospects

Future prospects

More general configurations of subsystems

General size of subsystems A1, A2, entanglement between disjoint intervals,

higher dimensions, etc.

Finite temperature systems

Applications to quantum field theories
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Backup slide: Details of the replica trick
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Analytic result:
[Calabrese et al., 2013]

log Tr(ρT2
A )ne

≃ log

[(
L2

2π2

)− c
6
(ne/2−2/ne) ( L

2π

)− c
6
(ne/2+1/ne)

]

Analytic result exhibits special behavior at

ne = 2.
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Backup slide: Details of the replica trick
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Backup slide: Details of the replica trick
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Backup slide: Temperature dependence of the entanglement

negativity
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Backup slide: Temperature dependence of the entanglement

entropy
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