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Quantum entanglement

m The non-local correlation between subsystems of a quantum many-body
system.

m Wide applications in various topics:

m Critical phenomena
m Geometry of spacetime
m Quantum circuits
m Various measures have been proposed:
entanglement entropy, Rényi entropy, mutual information, etc.
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Entanglement negativity &£ [vidal-Werner, 2002]

m Measure of the quantum entanglement between two subsystems A;, As.
A = Ay U A, can be in a mixed state!

|
N

€ =log |lpy|| = log tr|py

Ay A,
| M||: Sum of absolute values of eigenvalues of the matrix M (trace norm).
pa = trzp: The reduced density matrix of the subsystem A = A; U A,.

T5: The partial transpose with respect to subsystem A,.

(pA)(1112)(J1J2) = (10:52)(11&)((]112)
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Replica trick

m Like the entanglement entropy, the entanglement negativity can be
computed using the replica trick:

£ = i lostr (/)"

where n, = 2,4,6,....
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Why entanglement negativity?

m EN allows us to probe quantum correlations in mixed states.
(Mutual information cannot exclusively capture quantum correlations.)

m EN can be a useful probe for analyzing phase transitions in
finite-temperature systems, such as QGP phase transition.

m We take advantage of the tensor renormalization group (TRG) approach to
compute EN.
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TRG approach [Levin-Nave, 2006]

m Coarse-graining of a given tensor network based on the idea of the
real-space renormalization group.

m Sign problem free.
m Direct evaluation of the path integral (=density matrix).

m No replica trick required.

m Applicable to higher-dimensional systems.

(Computationally expensive for higher dimensions, but still feasible.)
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Tensor network representation of p

For example, We consider the density matrix p = e ?# /7 of a Gibbs state.

m For small AB, e ®PH ~ 1 — ABH is a local
operator acting on each lattice site.

m Tensors are locally connected to each other
since the Hamiltonian H is local.

m Periodic boundary condition is imposed. |
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Tensor network representation of p

m Since e P = limpy_ oo e PN =BH s 3

Ap

product of local operators e~ where

AB = B/N.

m If we consider the d-dimensional quantum
system, p is represented as a
(d + 1)-dimensional tensor network.
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Tensor network representation of p4

m The reduced density matrix p4 is obtained by A
tracing out the indices corresponding to the
complementary subsystem A.
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Partial transpose pzf

m We can swap the indices of the
subsystem A, in p4 to obtain the partial
transpose p’.

T
(:OAQ)(IlJz)(JlI‘z) = (IOA)(hIz)(JlJz)
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Tensor network representation of the partition function

m Of course, tracing out all the indices of p gives
the partition function Z = trp.
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Higher-Order TRG algorithm [xie et al., 2012

We use the HOTRG algorithm for coarse-graining tensor networks.

m Isometry matrix U diagonalizes the matrix M MT, and contains the Dy
largest eigenvalues of M M.
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HOTRG algorithm ixie et al., 2012]

Note that

— ¢ =

since the isometry matrix U is a submatrix of a unitary matrix.
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Coarse-graining of PZ;Q

For example, we consider the reduced density matrix p4 shown below.
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First set of coarse-graining

Apply the HOTRG algorithm once in both time and space directions.
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Second set of coarse-graining

Apply the HOTRG algorithm twice in both time and space directions.
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Further simplification

Using UTU = 1, we can simplify the lower part of the network.
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"Trimming” the network

Isometry matrices with two open indices do not contribute to the final result.
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Final form of the network

Two sets of renormalization + simplification + trimming gives us the following

I :]1 Aq
I E J2 A

network:

This network gives (,OZQ)(Ilh)(Jl]Q). )%



Numerical test

m We consider the one-dimensional quantum Ising model
H = —JZUfU;’ — hIZUf,
(i.3) i

at criticality h, = J and T' = 0.

m We map the 1d quantum Ising model to the (1+1)d classical isometric Ising
model at T, = T..
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Numerical test

m We focus on the entanglement between two adjacent intervals Ay, As in a
larger system of size L with periodic boundary conditions.

......
N o
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m We fix the size of the subsystem such that ¢; = ¢, = 1/4L, and compute
the entanglement negativity for various ¢;.
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Entanglement negativity at criticality

08 g m Analytic result:
' [Calabrese et al., 2013]
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©05
= D16 - m Fitting result for 8 < /7 < 128:
04 D=32 ¢ = 0.4966(9)
03 oo Theoretical value ¢ = 0.5 is
D=128
0.2} - - 300 reproduced.
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Replica vs direct calculation at D¢,; = 128

m We extrapolate £ to n. = 1 for each

2%° : 0 =1,2,4,....
%06 m Fitting result for 8 < /7 < 128:
g c=0.47(2)
Lo.4 m cf. direct calculation results:
2 ¢ = 0.44(1) (Deye = 16)

02 ¢ =0.482(3) (Deut = 32)

t Replica calc.
Direct calc. ~
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Conclusion and future prospects

Results

m We have computed the entanglement negativity of the one-dimensional
quantum Ising model at criticality with TRG approach.

m Our result is consistent with known results, confirming the validity of our
calculations.

m Our results implies the potential advantage of the TRG approach for
computing entanglement negativity over the Monte Carlo method.
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Conclusion and future prospects

Future prospects

m More general configurations of subsystems

General size of subsystems Ay, A5, entanglement between disjoint intervals,

higher dimensions, etc.
m Finite temperature systems

m Applications to quantum field theories
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Backup slide: Details of the replica trick

m Analytic result:
[Calabrese et al., 2013]

log TH(#2) "

L2 —%(ne/Q—Q/'ne) L —%(ne/2+1/ne)
~log || —= —
(271'2) (27r>

m Analytic result exhibits special behavior at
Ne = 2.

201 10 700 1000
subsystem size |
26 /30



Backup slide: Details of the replica trick
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Backup slide: Details of the replica trick
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Backup slide: Temperature dependence of the entanglement

negativity

D=32, 1,=256
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Backup slide: Temperature dependence of the entanglement

entropy

D=32, [5=512
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