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Recent activities of our group

- Development of quantum simulation and quantum embedding

methods using tensor networks and sampling
» Quantum simulation / EF¥Y3aL—Y3Y
- State preparation for quantum simulation = arXiv:2506.04663
- Mitigation of the negative sign problem in quantum Monte Carlo = arXiv:2501.18069
« Tensor network algorithms / 72V IRV cDID—O7 VIV X L
* Quantum states of many-body systems — arXiv:2403.11490
- Applications to field theory — arXiv:2410.09485, arXiv:2501.18918
- Compression of generative models = arXiv:2408.10669, arXiv:2504.06722
- Tensor networks for option pricing = arXiv:2405.00701, arXiv:2507.08482
- Tensor networks + MCMC simulator = arXiv:2412.02974
» Quantum embedding / EFIB&HAH
- Sample complexity of matrix product states at finite T = arXiv:2403.10018
- Embedding tensor networks in quantum circuits = arXiv:2501.18856,
arXiv:2504.09250, arXiv:2504.14995
- Optimization of tensor contraction order by graph theory
- QEC, error mitigation, quantum compilation / 8 FI5>—ETiE. IS—&M. &F12/\1)L
- Tensor network decoder, noise model estimation = arXiv:2406.08981
- Decomposition of multi-controlled gates — arXiv:2109.13223, arXiv:2410.00910
- Automatic differentiation of parameterized quantum circuits
- Load/Store architecture for limited-scale FTQC — arXiv:2412.20486
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Abstract

We demonstrate that conventional artificial deep neural networks operating near the phase boundary of the signal
propagation dynamics—also known as the edge of chaos—exhibit universal scaling laws of absorbing phase

transitions in non-equilibrium statistical mechanics. We exploit the fully deterministic nature of the propagation

dynamics to elucidate an analogy between a signal collapse in the neural networks and an absorbing state (a state

that the system can enter but cannot escape from). Our numerical results indicate that the multilayer perceptrons

and the convolutional neural networks belong to the mean-field and the directed percolation universality classes,

arXiv:2307.02284, to appear in PRR tonight




Statistical error in MCMC measurements i
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- There is autocorrelation between successive configurations
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- 6y : population variance (variance of time-series data)

* M : number of Monte Carlo steps

- 7., - autocorrelation time (determined by the MC dynamics)
- effective sample size » M/2z,

- For systems with a negative sign problem
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-frustrated quantum spin systems, fermionic systems, unitary evolution, etc

* s : average sign (exponentially small for larger system, lower temperature, longer
time)

- effective sample size > s°M/2z,,



Advances in Markov chain Monte Carlo

arXiv:2412.02974
- Representation (definition of “configurations” and “weighs”)

- path integral representation for quantum Monte Carlo (1976), Bayesian inference
(1990)...
- Choice of ensemble
- extended ensemble method: multicanonical MC (1991, 2001),
exchange MC (1996), lifting (2000)...
- Generation of set of candidate configurations
- non-local (cluster) updates: Swendsen-Wang (1987),
Hamiltonian MC (198%7), loop (1993), worm (1998)...
- Choice of transition kernel (probabilities)
- Metropolis, heat bath (Gibbs sampler), over-relaxation (1987),
irreversible kernel (2010), event-chain (2013)...
- Algorithm for generating a configuration according to transition probabilities
* N-fold way (rejection free) (1975), Walker’ s method (1977, 2019),
order-N algorithm (1995, 2009)...



Reduction of population variance

_ _ 267
- Can we change (or control) population variance? ¢?%= 1(\)/[1

- Standard textbooks say...
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- The variance is given by the specific heat (= physical property of the system)
- > not affected by the details of the sampling scheme?
For Z = Z W(B, s), energy and specific heat are given by
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- above statement is valid only when the weight is given by

W(p, s) = exp[—pE(s)]

- In general,



Reduction of population variance
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- Generally, population variance is determined when we choose a

representation of the target partition function
*e.q.

Z =) exp[-BE()]

- Some attempts to reduce o}
- Improved estimators in cluster algorithm

- partition function and physical quantities (magnetization™2, etc) are defined in

term of cluster configurations

- No systematic approach has been proposed so far!



Advances in Markov chain Monte Carlo

arXiv:2412.02974
- Representation (definition of “configurations” and “weighs”)

- path integral representation for quantum Monte Carlo (1976), Bayesian inference
(1990), tensor-network representation
* Choice of ensemble
- extended ensemble method: multicanonical MC (1991, 2001),
exchange MC (1996), lifting (2000)...
- Generation of set of candidate configurations
- non-local (cluster) updates: Swendsen-Wang (1987),
Hamiltonian MC (1987), loop (1993), worm (1998)...
- Choice of transition kernel (probabilities)
- Metropolis, heat bath (Gibbs sampler), over-relaxation (1987),
irreversible kernel (2010), event-chain (2013)...
- Algorithm for generating a configuration according to transition probabilities
* N-fold way (rejection free) (1975), Walker’s method (1977, 2019),
order-N algorithm (1995, 2009)...



Many-body wave function and tensor

arXiv:2412.02974
- Wave function of N-qubit (spin-1/2) system

|\P> - Z 01,02, |6162“'0-N>
01,02,

- linear combination of 2" states - 2N coefficients(C, , .., ) should be specified -
memory cost ~ 2V

* C can be regarded as N-leg (rank-N) tensor
f C ? # ? ? ?’ . ' . 4?
O1 02 O3 ON O1 O2 O3 OnN

- Tensor = multi-dim array = generalization of vectors/matrices
- 0-leg tensor — scalar ‘ ,
1
- 1-leg tensor —» vector .—

- 2-leg tensor = matrix i‘i

* N-leg tensor = memory/computational cost ~ exp(/V)



Tensor network (tensor diagram)

arXiv:2412.02974
- Contraction of tensors

- taking a summation over shared indices (=connected legs)

- Contraction of two-leg tensors — result is a two-leg tensor

- matrix-matrix multiplication

Cij=(AB)ij =Y AixBu,;
k

iajzia Bj

- General tensor contractions can be represented similarly

C=AB

Dijr= ), AijasBsrCoia k.
a,B,y (}

J J



Tensor network representation
TNV N —OFKIR

- Quantum state of quantum many-body systems /
EFEZHRRDETIANRE
- MPS, Tree TN, MERA, PEPS
- Sampling Complexity of MPS at finite temperature

- Partition function in statistical physics /
Rt NERB DD ECREEL
- TN renormalization / TN#&Y AHE#
- Application to lattice field theories / HDERA DA
*Machine learning using TN / 72V )b kJ—7
[C L DEWFE
- Compression of neural networks/generative
models / Za1—2 IRV ET—0 -ERETIVDEHE
- Compression in hierarchical structure /
[EEBEDFERENE
- Quantics representation / EPRZ AR
* TN simulation of PDE / a3 AFEXDTNYI2L—3Y

Gourianov et al (2022)



TN methods in statistical physics

arXiv:2412.02974
- “Renormalization” (or “Lagrangian”) approach

 coarse graining of tensor network representation of the partition function
- transfer matrix, tensor network renormalization (TRG), higher-order tensor network
renormalization (HOTRG), etc
- “Variational” (or “Hamiltonian”) approach
- tensor-network approximation of strongly correlated many-body quantum states
- DMRG, PEPS, MERA, etc
- “Exact” contraction of tensor network can not be done in two and higher

dimensions
- low-rank approximation based on eigenvalue/singular value decomposition

- accuracy of approximation is controlled by “bond dimension”: D ( or y)

..{;"E%?..



Tensor renormalization group
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- Low-rank approximation based on SVD
|_ computational cost: O(D?)
I : 3
memory cost: O(D")

- Improvement of accuracy by considering the “environment” effects or

removing local correlations
- second order renormalization (SRG), mean-field SRG, etc

arXiv:2412.02974

- tensor network renormalization (TNR), loop TNR, Gilt, etc
- computational cost increases significantly

Levin & Nave (2007)



Low-rank approximation in TN methods

arXiv:2412.02974
- Low-rank approximation based on SVD

- choose largest d singular values

I
+ = o

- Projector formulation
- choose the best projector to d dimensions

- equivalent to low-rank approximation using SVD

@t (DD
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Levin-Nave tensor renormalization group &t
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* 8 X 8 square lattice case (N = 64)
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Levin-Nave tensor renormalization group &t
arXiv:2412.02974
* 8 X 8 square lattice case (N = 64)
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Projection formulation of TRG

* 8 X 8 square lattice case (N = 64)

N S D GRS G S

S0 GRS GRS D SN G S S
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* 2N initial tensors

* (N —4) projectors
- depth of contraction

graph ~ log N




MPS simulation of quantum circuits: TEBD
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- 2-qubit operation (contract and SVD)
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- Projector formulation
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Projector formulation of TN methods

- ATRG (Adachi et al 2020) and CATN (Pan et al 2020)
- leg swap based on SVD

$ E;D — —5" ._;Da , < =~ —
sUP P

D
P~ Do

arXiv:2412.02974

- leg swap based on projector

ISR a

- Any tensor network renormalization methods can be reformulated using
projectors (?)




Core idea of tensor-network MCMC
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- Random projectors

- instead of choosing the “best” projector, all possible projectors are sampled
according to some weights, such that on average (Ferris 2015)

Nc

(Wa@W;O)s = — > Wa®)WL(6)p(9) = I,

n
€ o9=1

- Should use Markov chain Monte Carlo to control variance
- as, in random sampling and importance sampling, statistical error diverges

exponentially as system size increases

- Should use different projector configurations in different positions
- to avoid systematic errors from correlation



Markov chain Monte Carlo approach

arXiv:2412.02974
- Determine projector candidates from SVD during the conventional

(deterministic) TRG
- projectors becomes independent with each other and can be sampled independently

p(0y,0,,---,6,) = p(0)p(6,)---p(0,)

- (exact) tensor network representation of partition function

Z= 80,00, 0000, .0) = Y g(0.0,,6,)p(6)p(6)+p(6),)
(6.} {0}
- Sample projectors {6} using Markov-chain Monte Carlo
* propose new 6; according to p(6;)
- Metropolis update with P = min(1,¢(0,, 65, ---, 0, ---,0,)/g(6,,6,, ---, 0., ---,6.))

- update of weights is O(log N) and includes matmul only
- SVDs are required during the initialization stage only
- Physical quantities

- can be evaluated by using the impurity tensor technique (without systematic bias)



specific heat

Comparison with Levin-Nave TRG + impurities

* Square-lattice Ising model (L = 16)

- Exact results (transfer matrix): dark blue

- TensorMC: d=6 (red symbols)

- Levin-Nave TRG: d=2 (purple), 4 (green), 6 (cyan),..., 16 (black)
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Comparison with Metropolis algorithm

arXiv:2412.02974
- Square-lattice Ising model

- asymptotic variance is smaller by orders of magnitude

- asymptotic variance decreases exponentially as = Tetropols

TNMC (D=6)
12 A

d increases
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Ising model in imaginary external field
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*Square lattice Ising model Yang-Lee zeros on complex plane of fugacity 2

- GO O

- pure imaginary external field

h=in/2p = z=e Ph=—1 T>T T=T T<T
- non-positive Boltzmann weight (m: total magnetization)

W = P 209 x (—1)™?  (m: total magnetization)

- Standard Markov chain Monte Carlo suffers from severe negative sign
problem 1
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Ising model in imaginary external field

arXiv:2412.02974
* Qur proposed method also has negative signs for small d

*d =2 results are almost similar to the standard method

* NB: negative signs can appear for small d (but not serious) even if the original model
is free from negative sign

* However, the average sign is improved drastically as we increase d
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Summary and outlook

- Markov chain Monte Carlo in tensor network representation
- reducing statistical error using approximate

arXiv:2412.02974

. 2
tensor network contraction ) 200 Tint
o°- =

- removing systematic bias by sampling singular M

vectors (projectors) using MCMC
- avoid divergence of statistical error, negative signs, and systematic bias

- Computational complexity of one Monte Carlo update

*O(d*N log N)

- matmul only (no SVD) during MCMC sampling = ideal for modern GPGPU or HPC
- Combination with various advanced sampling techniques (to reduce z,,)

- Applications:
- quantum spin models (via Suzuki-Trotter decomposition)
- higher dimensions: HOTRG (2012), ATRG (2020)
- fermions, quantum circuits, etc
- variational MC based on PEPS

- others?



Combination with Sequential MC
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- Sequential MC aka
) green’s funCtlon Monte Carlo initialising weighting resampling perturbing weighting
- transfer matrix Monte Carlo —
- population Monte Carlo |
- Monte Carlo filter
- particle filter
- bootstrap filter
- SISR (sequential importance

sampling with resampling)

- @ - - - -

- 90000 - -

poo o

& P

t=0 t=1 t=1 t=1 t=2

https://www.researchgate.net/figure/Sequential-Monte-Carlo-scheme fig2 322302619

- Central idea of SMC
- approximate probability distribution by (weighted) ensemble of particles

- by using Markov chain
- control variance by resampling



A simple example
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- estimate mean of product of /N random numbers:

E[X1X2' . .XN] - F

« X is sampled independently randomly from uniform distribution between 0 and 2

- expectation value: I'=1
-typical value of product ~ exp[(log2 — 1)N]
- variance increases rapidly for large N (4, 8, 16, 32, 64)

0.25 ! ! ! !
0.2

0.15

frequency
e

0.05

Var[X,X,---Xy] ~ (4/3)"




Resampling

- Simple sequential importance sampling becomes unstable for large

steps
- weight of each walker is updated randomly by weight factors: W = w,w,ws--

- random walk diffusion in logarithmic scale
- weight degeneracy: weight variance (discrepancy between weights) grows

exponentially and only a few walkers dominate
- Resampling is necessary to stabilize the algorithm
- resampling:

= = 2 mﬂm\_
k k : |

- after resampling, all walkers share the same o

arXiv:2412.02974
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Li-Stattar-Sun (2012)



Effect of resampling
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XO=1

X = Sy (k= 1,2, 1)

- £, is sampled independently randomly from uniform distribution
between 0 and 2

2 ] - 10 - -
without resampling —=— F without resampling —=—
with resampling —— with resampling
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Summary and outlook

- 5 steps to MCMC-ize your TRG algorithms
1. Select the TRG method most appropriate for your target.

arXiv:2412.02974

2. Rewrite it into a projector formalism (replace SVD by projector insertion)
* This step is a bit non-trivial
3. Perform (deterministic and optimal) TRG method to collect a complete set of
rank-1 projectors and their weights (singular values)
- We have already developed a library for this purpose (but in Python)
4. If your TRG method assumes translational symmetry (an O(log N) method), convert
it to an O(N) procedure that does not assume translational symmetry
- We have a prototype library that performs this conversion automatically (but in
Python)
5. Perform MCMC sampling
- We have a generic prototype code for MCMC sampling (but in Python)



Summary and outlook

arXivi2412.02974
- Developing a standard tensor network library
- low-level, high-performance, portable, stable, and clean

- gather good experiences from many existing libraries, and avoid bad practices
- implemented in Rust, then wrappers for C/C++, Fortran, Python, Julia, etc
- explicit memory management
- thread-safe, MPI parallelization, GPU support
* tensor contraction without transpose
- support diagonal tensors, Grassmann tensors
- + mid-level interfaces
- tensor SVD, tensor QR, tensor functions, etc
* + TensorMC support
* projector generation, conversion into O(N) procedure, projector sampling,
contraction graph and cache mechanism

- The name is still a secret...



