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Recent activities of our group
•Development of quantum simulation and quantum embedding 

methods using tensor networks and sampling 

• Quantum simulation / 量子シミュレーション 

• State preparation for quantum simulation → arXiv:2506.04663 

• Mitigation of the negative sign problem in quantum Monte Carlo → arXiv:2501.18069 

• Tensor network algorithms / テンソルネットワークアルゴリズム 

• Quantum states of many-body systems → arXiv:2403.11490 

• Applications to ]eld theory → arXiv:2410.09485, arXiv:2501.18918 

• Compression of generative models → arXiv:2408.10669, arXiv:2504.06722 

• Tensor networks for option pricing → arXiv:2405.00701, arXiv:2507.08482 

• Tensor networks + MCMC simulator → arXiv:2412.02974 

• Quantum embedding / 量子埋め込み 

• Sample complexity of matrix product states at ]nite T → arXiv:2403.10018 

• Embedding tensor networks in quantum circuits → arXiv:2501.18856, 

arXiv:2504.09250, arXiv:2504.14995 

• Optimization of tensor contraction order by graph theory 

• QEC, error mitigation, quantum compilation / 量子エラー訂正、エラー緩和、量子コンパイル 

• Tensor network decoder, noise model estimation → arXiv:2406.08981 

• Decomposition of multi-controlled gates → arXiv:2109.13223, arXiv:2410.00910 

• Automatic differentiation of parameterized quantum circuits 

• Load/Store architecture for limited-scale FTQC → arXiv:2412.20486



3arXiv:2307.02284, to appear in PRR tonight



Statistical error in MCMC measurements

• There is autocorrelation between successive con]gurations 

•  : population variance (variance of time-series data) 

•  : number of Monte Carlo steps 

•  : autocorrelation time (determined by the MC dynamics) 

• effective sample size →  

• For systems with a negative sign problem 

•frustrated quantum spin systems, fermionic systems, unitary evolution, etc 

•  : average sign (exponentially small for larger system, lower temperature, longer 

time) 

• effective sample size → 
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Advances in Markov chain Monte Carlo

• Representation (de]nition of “con]gurations” and “weighs”) 

• path integral representation for quantum Monte Carlo (1976), Bayesian inference 

(1990)... 

• Choice of ensemble 

• extended ensemble method: multicanonical MC (1991, 2001), 

exchange MC (1996), lifting (2000)... 

• Generation of set of candidate con]gurations 

• non-local (cluster) updates: Swendsen-Wang (1987),                                         

Hamiltonian MC (1987), loop (1993), worm (1998)... 

• Choice of transition kernel (probabilities) 

• Metropolis, heat bath (Gibbs sampler), over-relaxation (1987), 

irreversible kernel (2010), event-chain (2013)... 

• Algorithm for generating a con]guration according to transition probabilities 

• -fold way (rejection free) (1975), Walker’s method (1977, 2019),                          

order-  algorithm (1995, 2009)...

N
N
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Reduction of population variance

• Can we change (or control) population variance? 

• Standard textbooks say... 

• The variance is given by the speci]c heat (= physical property of the system) 

• →　not affected by the details of the sampling scheme? 

•
For  , energy and speci]c heat are given by 

• In general,  

• above statement is valid only when the weight is given by

Z = ∑
s

W(β, s)
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Reduction of population variance

• Generally, population variance is determined when we choose a 

representation of the target partition function 

• e.g. 

• Some attempts to reduce  

• Improved estimators in cluster algorithm 

• partition function and physical quantities (magnetization^2, etc) are de]ned in 

term of cluster con]gurations 

• No systematic approach has been proposed so far!
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Advances in Markov chain Monte Carlo

• Representation (de]nition of “con]gurations” and “weighs”) 

• path integral representation for quantum Monte Carlo (1976), Bayesian inference 

(1990), tensor-network representation 

• Choice of ensemble 

• extended ensemble method: multicanonical MC (1991, 2001), 

exchange MC (1996), lifting (2000)... 

• Generation of set of candidate con]gurations 

• non-local (cluster) updates: Swendsen-Wang (1987),                                         

Hamiltonian MC (1987), loop (1993), worm (1998)... 

• Choice of transition kernel (probabilities) 

• Metropolis, heat bath (Gibbs sampler), over-relaxation (1987), 

irreversible kernel (2010), event-chain (2013)... 

• Algorithm for generating a con]guration according to transition probabilities 

• -fold way (rejection free) (1975), Walker’s method (1977, 2019),                          

order-  algorithm (1995, 2009)...

N
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Many-body wave function and tensor

• Wave function of -qubit (spin-1/2) system 

• linear combination of  states →   coef]cients( ) should be speci]ed → 

memory cost 〜  

•  can be regarded as -leg (rank- ) tensor 

• Tensor = multi-dim array = generalization of vectors/matrices 

• 0-leg tensor → scalar 

• 1-leg tensor → vector 

• 2-leg tensor → matrix 

• ... 

• -leg tensor → memory/computational cost 〜 

N

2N 2N Cσ1,σ2,⋯,σN

2N

C N N

N exp(N )

9

|Ψ⟩ = ∑
σ1,σ2,⋯,σN

Cσ1,σ2,⋯,σN
|σ1σ2⋯σN⟩

σ1 σ2 σ3 σN

・ ・ ・
C

σ1 σ2 σ3 σN

・ ・ ・

・ ・ ・

⇒

arXiv:2412.02974



Tensor network (tensor diagram)

• Contraction of tensors 

• taking a summation over shared indices (=connected legs) 

• Contraction of two-leg tensors → result is a two-leg tensor 

• matrix-matrix multiplication 

• General tensor contractions can be represented similarly
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Tensor network representation 
テンソルネットワーク表現

•Quantum state of quantum many-body systems / 

量子多体系の量子状態 

• MPS, Tree TN, MERA, PEPS 

• Sampling Complexity of MPS at ]nite temperature 

•Partition function in statistical physics /  

統計力学模型の分配関数 

• TN renormalization / TN繰り込み群 

• Application to lattice ]eld theories / 場の理論への応用 

•Machine learning using TN / テンソルネットワーク 

による機械学習 

• Compression of neural networks/generative 

models / ニューラルネットワーク・生成モデルの圧縮 

•Compression in hierarchical structure / 

階層構造の情報圧縮 

• Quantics representation / 同次多項式表現 

• TN simulation of PDE / 偏微分方程式のTNシミュレーション

11
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FIG. 1. (a) Graphical representation of the weight matrix W in a
fully connected layer. The blue circles represent neurons, e.g., pixels.
The solid line connecting an input neuron xi with output neuron
y j represents the weight element Wji. (b) MPO factorization of the
weight matrix W . The local operators w(k) are represented by filled
circles. The hollow circles denote the input and output indices, il and
jl , respectively. Given ik and jk , w(k)[ jk, ik] is a matrix.

different kernels are used to extract different features. A
graphical representation of W is shown in Fig. 1(a).

Usually, the number of elements or neurons, Nx and Ny, are
very large, and thus there are a huge number of parameters
to be determined in a fully connected layer [9]. The convo-
lutional layer reduces the variational parameters by grouping
the input elements into many partially overlapped kernels, and
one output element is connected to one kernel. The number of
variational parameters in a convolutional layer is determined
by the number of kernels and the size of each kernel. It could
be much less than that in a fully connected layer. However, the
total number of parameters in all the convolutional layers can
still be very large in a deep neural network which contains
many convolutional layers [10]. To train and store these
parameters raises a big challenge in this field. First, it is time
consuming to train and optimize these parameters, and may
even increase the probability of overfitting. This would limit
the generalization power of deep neural networks. Second,
it needs a big memory space to store these parameters. This
would limit its applications where the space of hard disk is
strongly confined; for example, on mobile terminals.

There are similar situations in the context of quantum in-
formation and condensed-matter physics. In a quantum many-
body system, the Hamiltonian or any other physical operator
can be expressed as a higher-order tensor in the space spanned
by the local basis states [33]. To represent exactly a quantum
many-body system, the total number of parameters that need
to be introduced can be extremely huge, and should in prin-
ciple grow exponentially with the system size (or the size of
each “image” in the language of neural network). The matrix
product operator (MPO) was originally proposed in physics to
characterize the short-range entanglement in one-dimensional
quantum systems [34,35], and is now a commonly used
approach to represent effectively a higher-order tensor or
Hamiltonian with short-range interactions. Mathematically, it
is simply a tensor-train approximation [36,37] that is used to
factorize a higher-order tensor into a sequential product of
the so-called local tensors. Using the MPO representation, the
number of variational parameters needed is greatly reduced

since the number of parameters contained in an MPO just
grows linearly with the system size. Nevertheless, it turns
out that to provide an efficient and faithful representation
of the systems with short-range interactions whose entangle-
ment entropies are upper bounded [38,39] or, equivalently,
the systems with finite excitation gaps in the ground states.
The application of MPOs in condensed-matter physics and
quantum information science has achieved great successes
[40,41] in the past decade.

In this paper, we propose to solve the parameter problem in
neural networks by employing the MPO representation, which
is illustrated in Fig. 1(b) and expressed in Eq. (5). The starting
point is the observation that the linear transformations in a
commonly used deep neural network have a number of similar
features as the quantum operators, which may allow us to
simplify their representations. In a fully connected layer, for
example, it is well known that the rank of the weight matrix
is strongly restricted [42–44] due to short-range correlations
or entanglements among the input pixels. This suggests that
we can safely use a lower-rank matrix to represent this layer
without affecting its prediction power. In a convolutional
layer, the correlations of images are embedded in the kernels,
whose sizes are generally very small in comparison with the
whole image size. This implies that the “extracted features”
from this convolution can be obtained from very local clusters.
In both cases, a dense weight matrix is not absolutely neces-
sary to perform a faithful linear transformation. This peculiar
feature of linear transformations results from the fact that the
information hidden in a data set is just short-range correlated.
Thus, to accurately reveal the intrinsic features of a data set,
it is sufficient to use a simplified representation that catches
more accurately the key features of local correlations. This
motivates us to adopt MPOs to represent linear transformation
matrices in deep neural networks.

There have been several applications of tensor network
structures in neural networks [37,45–50]. Our approach dif-
fers from them by the following aspects: (1) It is physically
motivated, emphasizes more on the local structure of the
relevant information, and helps to understand the success of
deep neural networks. (2) It works in the framework of neural
networks, in the sense that the multiple-layer structure and
activation functions are still retained and the parameters are
entirely optimized through algorithms developed in neural
networks. (3) It is a one-dimensional representation, and is
flexible to represent the linear transformations including both
the fully connected layers and the entire convolutional layers.
(4) It is also used to characterize the complexity of image data
sets. (5) A systematic study has been done. These issues will
become clear in the following sections.

The rest of the paper is structured as follows. In Sec. II,
we present the way the linear layers can be represented by
MPO and the training algorithm of the resulting network. In
Sec. III, we apply our method systematically to five main
neural networks, including FC2, LeNet-5, VGG, ResNet, and
DenseNet on two widely used data sets, namely, MNIST and
CIFAR-10. Experiments on more data sets can be found in
Sec. II. A in the Supplemental Material (SM) [51]. Finally, in
Sec. IV, we discuss the relation with previous efforts and the
possibility to construct a framework of neural networks based
on the matrix product representations in the future. In the SM
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correlations, it is still highly correlated in space because the fine grid 
dependence is repeated.

Truncating the Schmidt decomposition in equation (2) approxi-
mates ui in an orthonormal time-dependent basis that evolves with 
the fluid flow to optimally capture spatially correlated structures. 
This is in contrast to classical scientific computing techniques 
(implemented through, for example, finite-difference or spectral 
methods) where the bases are structure-agnostic; that is, they are 
chosen a priori and disregard any structure in the solution.

We first apply the decomposition in equation (2) to DNS solu-
tions of the INSE (equation (7)) for the TDJ shown in the top row of 
Fig. 2a. The TDJ comprises a central jet flow along the x direction, 
and Kelvin–Helmholtz instabilities in the boundary layer of the jet 
eventually cause it to collapse (see equations (9)–(15) for the initial 
flow conditions). We decompose each velocity component accord-
ing to equation (2), which is an exact representation if d(n) = Γ2D(n) 
with (for details, see Supplementary Section 2)

Γ
�%(O) = NJO(�O �/−O)� 	�


Figure 1b shows the Schmidt numbers d99(n, t) such that equation 
(2) represents the DNS solutions for the velocity fields with 99% 

accuracy in the L2 norm (more details on the Schmidt coefficients 
are provided in Supplementary Section 1). We find that d99(n, t) are 
well below their maximal values Γ2D(n) for n > 1. More specifically, 
we define ȕ

��

= NBY E

��

(O U) as the maximal value of d99 for all n 
and time steps. We obtain χ99 = 25, and the interscale correlations 
captured by equation (2) with E(O) = NJO

(
Γ

�%(O) ��
)
 are shown 

by the blue-shaded area M in Fig. 1b. d99(n, t) is entirely contained 
within this blue area. Note that the Schmidt numbers are shown on 
a logarithmic scale in Fig. 1b, and thus the area M is much smaller 
than the area D corresponding to DNS.

We obtain qualitatively similar results for the DNS solutions 
to the TGV in 3D, where vortex stretching causes a single, large, 
ordered fluctuation to collapse into a turbulent flurry of small-scale 
structures (see the top row in Fig. 3a for visualization and equation 
(16) in the Methods for the initial flow conditions). In three spatial 
dimensions, the representation in equation (2) is exact if d(n) equals 
(Supplementary Section 2)

Γ
�%(O) = NJO (�O �/−O)� 	�


The Schmidt numbers d99(n, t) resulting in a 99% accurate represen-
tation of the DNS solutions are shown in Fig. 1c. We find χ99 = 207, 
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Fig. 2 | 2D temporally developing jet. Dynamical simulation of the INSE in 2D for a planar jet streaming along x with Re!=!1,000, as defined in the Set-up 
of numerical experiments section in the Methods. a, Snapshots of the vorticity and velocity fields taken at t/T0!=!0.25, 0.75, 1.25, 1.75 (left to right). 
Red corresponds to positive vorticity (counter-clockwise flow) and blue to negative vorticity (clockwise). The top row corresponds to DNS results on 
a quadratic 210!×!210 grid (cf. Fig. 1a). Rows 2–4 are MPS results with different maximal bond dimensions χ. The bottom three rows are for URDNS on 
quadratic grids, as indicated. b, Reynolds stress τ12 (equation (14)) between the streamwise and cross-stream directions as a function of time and y 
coordinate. Red (blue) corresponds to positive (negative) stress.
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TN methods in statistical physics

• “Renormalization" (or “Lagrangian") approach 

• coarse graining of tensor network representation of the partition function 

• transfer matrix, tensor network renormalization (TRG), higher-order tensor network 

renormalization (HOTRG), etc 

• “Variational" (or “Hamiltonian") approach 

• tensor-network approximation of strongly correlated many-body quantum states 

• DMRG, PEPS, MERA, etc 

• “Exact" contraction of tensor network can not be done in two and higher 

dimensions 

• low-rank approximation based on eigenvalue/singular value decomposition 

• accuracy of approximation is controlled by “bond dimension":  ( or )D χ

12

(transmission)
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Tensor renormalization group

• Low-rank approximation based on SVD 

• Improvement of accuracy by considering the “environment" effects or 

removing local correlations 

• second order renormalization (SRG), mean-]eld SRG, etc 

• tensor network renormalization (TNR), loop TNR, Gilt, etc 

• computational cost increases signi]cantly

13

computational cost: 


memory cost: 

O(D5)

O(D3)

Levin & Nave (2007)
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Low-rank approximation in TN methods

• Low-rank approximation based on SVD 

• choose largest d singular values 

• Projector formulation 

• choose the best projector to d dimensions 

• equivalent to low-rank approximation using SVD

14
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Levin-Nave tensor renormalization group

•  square lattice case ( )8 × 8 N = 64

15
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Levin-Nave tensor renormalization group

•  square lattice case ( )8 × 8 N = 64

16

contract
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contract

SVD
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Projection formulation of TRG

•  square lattice case ( ) 

•  initial tensors 

•  projectors 

• depth of contraction 

  graph

8 × 8 N = 64

2N
(N − 4)

∼ log N
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MPS simulation of quantum circuits: TEBD

• 2-qubit operation (contract and SVD) 

• Projector formulation

18
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Projector formulation of TN methods

• ATRG (Adachi et al 2020) and CATN (Pan et al 2020) 

• leg swap based on SVD 

• leg swap based on projector 

• Any tensor network renormalization methods can be reformulated using 

projectors (?)

19
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Core idea of tensor-network MCMC

• Random projectors 

• instead of choosing the “best" projector, all possible projectors are sampled 

according to some weights, such that on average (Ferris 2015) 

• Should use Markov chain Monte Carlo to control variance 

• as, in random sampling and importance sampling, statistical error diverges 

exponentially as system size increases 

• Should use different projector con]gurations in different positions 

• to avoid systematic errors from correlation

20

3

pling scheme that selects d rank-1 projectors among r
according to a certain weight instead of choosing the op-
timal rank-d projector in the process of the tensor renor-
malization group, where the number of possible combina-
tions is given by nc =

(r
d

)
. The sampling weights are set

so that the rank-1 projectors corresponding to the larger
singular values are selected with higher probabilities. A
scale factor is introduced for each rank-1 projector so that
the random average of stochastic projectors becomes the
identity operator [71]:

→WR(ω)W
→
L(ω)↑ω =

1

nc

nc∑

ω=1

WR(ω)WL(ω)p(ω) = Ir, (3)

where ω denotes an index to specify the set of chosen
rank-1 projectors, and p(ω) is the probability for choosing
ω. (See Section S4 in Ref. 66 for more details.) Thus, the
resulting tensor network with stochastic projectors de-
fines an unbiased estimator for the partition function [70].

However, there is a fatal flaw with the approach in
Ref. 70. The number of projectors, Np, is in the same
order as the number of tensors in the original network.
The variance of the contraction of a tensor network con-
taining numerous random tensors explodes exponentially
to Np, as it is essentially equivalent to a product of an
extensive number of random numbers. Such naive impor-
tance sampling only works for relatively small systems as
the estimator’s variance diverges exponentially with the
system size. (See Section S1 in Ref. 66 for more details).
We must introduce a method that can control the vari-
ance, such as the sequential Monte Carlo [72, 73], with
resampling particles, or MCMC [1, 2]. In many cases, we
are interested in the expected value of physical quantities,
not the partition function itself, so the latter, MCMC, is
the method of choice.

In the following, we denote the state of each stochastic
projector as ωi. We aim to implement MCMC based on
a simple Metropolis-Hasting (MH) scheme [74, 75] with
{ωi} as the state variables. To do this, we need to intro-
duce the following additional techniques.

Independent proposal distribution: In the original pro-
posal by Ferris [70], a set of rank-1 projectors is obtained
based on the results of the previous short-scale renormal-
ization step, and then importance sampling is performed.
In this method, when the short-scale projectors (e.g., red
projectors in Fig. 1) are updated, the definition of longer-
scale projectors (blue and orange ones) changes, so it is
di!cult to implement MCMC. In our method, on the
other hand, we first execute the conventional determin-
istic tensor renormalization procedure (in the projector
formulation) as an initialization process. At the same
time, we determine all the rank-1 projectors and their
weights using the results of the SVD in that process.
During the MCMC process, we do not change the pro-
jector sets and the weights. This initialization scheme
makes the proposal distribution of the MCMC projec-

tors independent for each projector, and the partition
function can be written as

Z =
∑

{ωi}

g(ω1, ω2, . . . ωNp)p(ω1)p(ω2) · · · p(ωNp). (4)

In addition, since SVD is only performed for initializa-
tion, and in the MCMC process, only the selection of
rank-1 projectors and the contraction of the tensor net-
work with embedded projectors is executed, it has the ad-
vantage of being very high-performance and executable
on modern computer architectures.
Computational graph: The weight factor, g({ωi}) in

Eq. (4), is the tensor network contraction with embedded
projectors. When the projector configuration changes,
the contraction of the whole network must be evaluated
again. If we re-evaluate the entire tensor network every
time, the computational complexity is O(d5N); that is,
the cost of one MCMC sweep becomes O(d5N2), which
is very ine!cient. To reduce the order of this computa-
tional complexity, we introduce the concept of a compu-
tational graph. The series of contractions can be repre-
sented as a tree structure. The initial tensors and projec-
tors correspond to the leaves of the tree structure. When
a projector, i.e., a pair of WL(ω) and WR(ω), is updated,
only their ancestors need to be re-evaluated. This way,
in the case of TRG, the computational complexity of a
single MCMC sweep is reduced to O(d5N logN).
Physical quantities : In the standard tensor network al-

gorithms, finite di”erence or automatic di”erentiation of
the free energy is used to evaluate the expectation value
of the physical quantities, such as the internal energy and
magnetization. In our MCMC algorithm, we adopt the
impurity tensor method [76–78] instead. In the impu-
rity tensor method, we prepare “impurities,” which are
obtained by di”erentiating the initial tensors concerning
the external variables, such as the temperature and the
magnetic field, and then recursively evaluate the contrac-
tion of the tensor network that contains only one or two
impurities in total, depending on the order of di”erenti-
ation. This method is easily implemented in projector-
base tensor network renormalization and is compatible
with our MCMC formalism. One of the drawbacks of the
impurity tensor method in ordinary tensor renormaliza-
tion groups is that it does not consider projector deriva-
tives, which introduces extra systematic errors. However,
in our MCMC method, the projectors become the iden-
tity operators after taking the random average and do
not depend on external variables; we have no systematic
error in the impurity tensor method.
To demonstrate the e”ectiveness of the proposed

method, we present simulation results of the two-
dimensional square lattice Ising model, which Hamilto-
nian is given by

H = ↓J
∑

↑i,j↓

εiεj ↓ h
∑

i

εi, (5)
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Markov chain Monte Carlo approach

• Determine projector candidates from SVD during the conventional 

(deterministic) TRG 

• projectors becomes independent with each other and can be sampled independently 

• (exact) tensor network representation of partition function 

• Sample projectors  using Markov-chain Monte Carlo 

• propose new  according to  

• Metropolis update with  

• update of weights is  and includes matmul only 

• SVDs are required during the initialization stage only 

• Physical quantities 

• can be evaluated by using the impurity tensor technique (without systematic bias)

{θi}
θi p(θi)

P = min(1,g(θ1, θ2, ⋯, θ′ i, ⋯, θn)/g(θ1, θ2, ⋯, θi, ⋯, θn))

O(log N )

21

p(θ1, θ2, ⋯, θn) = p(θ1)p(θ2)⋯p(θn)

Z = ∑
{θi}

g(θ1, θ2, ⋯, θn)p(θ1, θ2, ⋯, θn) = ∑
{θi}

g(θ1, θ2, ⋯θn)p(θ1)p(θ2)⋯p(θn)
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Comparison with Levin-Nave TRG + impurities

• Square-lattice Ising model ( ) 

• Exact results (transfer matrix): dark blue 

• TensorMC: d=6 (red symbols) 

• Levin-Nave TRG: d=2 (purple), 4 (green), 6 (cyan),..., 16 (black)

L = 16
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Comparison with Metropolis algorithm

• Square-lattice Ising model 

• asymptotic variance is smaller by orders of magnitude 

• asymptotic variance decreases exponentially as 

 increases 

• energy (purple), speci]c heat (green), 

magnetization2 (cyan)

d

23

σ2 =
2σ2
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Ising model in imaginary external ]eld

• Square lattice Ising model 

• pure imaginary external ]eld 

• non-positive Boltzmann weight ( : total magnetization) 

• Standard Markov chain Monte Carlo suffers from severe negative sign 

problem 

m

2

accumulate in certain regions or curves of the complex plane, with their positive local density 
η(z) which changes by changing the temperature; if at a critical value Tc, the zeros accumulate 
and pinch a positive value of the real axis, this is what may mark the onset of a phase transition.

As we are going to discuss extensively through the rest of the paper, the pattern of zeros of 
grand-canonical partition functions can be generally quite interesting and this study alone is a 
source of many stimulating physical and mathematical questions. If the study of the patterns 
of Yang–Lee zeros is then the !rst topic of this paper, the Yang–Lee model (and its zeros!) is 
our second main topic. In order to introduce such a model and present the work of this paper 
in its proper perspective, we need to talk about the pattern of zeros of just one particular sta-
tistical system: the Ising model. In [3] Yang and Lee showed that for ferromagnetic Ising-like 
models, independently on the dimensionality and regularity of the lattice and also largely 
independently on the nature of the couplings, the zeros of the Ising model lie on the unit cir-
cle5 in the complex plane of the variable z = e−2βh (where β = 1/(kT) and h is the external 
magnetic !eld): posing z = eiθ, they have the following structure (see !gure 1):

 • for T > Tc the zeros are placed along a ‘C’, namely a symmetric arc around θ = π whose 
edges are at ±θ0(T); 

 • at T = Tc these edges move to the real axis and pinch it; 
 • for T < Tc the zeros densely cover the entire circle.

Kortman and Grif!ths [9] were the !rst to notice that the density of the Yang–Lee zeros of 
the Ising model nearby the edges ±θ0(T) gives rise to a problem which has its own interest 
since such a density presents an anomalous behaviour with a scaling law ruled by a critical 
exponent σ

η(θ, T) ∼ |θ − θ0(T)|σ , T > Tc . (1)

Such a behavior is closely analogous to the usual critical phenomena (although in this case 
triggered by a purely imaginary magnetic !eld ih) and therefore Fisher [10] posed the question 
about its effective quantum !eld theory and argued that, in suf!ciently high dimension d, this 
consists of a φ3 Landau–Ginzburg theory for the scalar !eld φ(x) with euclidean action given by

A =

∫
ddx
[

1
2
(∂φ)2 + i(h − h0)φ+ igφ3

]
. (2)

Figure 1. Distribution of the Yang–Lee zeros for the Ising model in the complex plane 
of the fugacity z.

5 This circle-theorem was later extended by many authors to ferromagnetic Ising model of arbitrarily high spin and 
with many-body spin interactions [4–8].

G Mussardo et alJ. Phys. A: Math. Theor. 50 (2017) 484003
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H = − ∑
⟨i, j⟩

σiσj − h∑
i

σi

      ( : total magnetization) W = eβ∑ σiσj × (−1)m/2 m

Yang-Lee zeros on complex plane of fugacity z

h = iπ /2β z = e−2βh = − 1⇒
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Ising model in imaginary external ]eld

• Our proposed method also has negative signs for small  

•  results are almost similar to the standard method 

• NB: negative signs can appear for small  (but not serious) even if the original model 

is free from negative sign 

• However, the average sign is improved drastically as we increase 

d
d = 2

d

d
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Summary and outlook

• Markov chain Monte Carlo in tensor network representation 

• reducing statistical error using approximate  

tensor network contraction 

• removing systematic bias by sampling singular  

vectors (projectors) using MCMC 

→ avoid divergence of statistical error, negative signs, and systematic bias 

• Computational complexity of one Monte Carlo update 

•  

• matmul only (no SVD) during MCMC sampling → ideal for modern GPGPU or HPC 

• Combination with various advanced sampling techniques (to reduce ） 

• Applications: 

• quantum spin models (via Suzuki-Trotter decomposition) 

• higher dimensions: HOTRG (2012), ATRG (2020) 

• fermions, quantum circuits, etc 

• variational MC based on PEPS 

• others?

O(dαN log N )

τint

26

σ2 =
2σ2

0 τint

M
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Combination with Sequential MC

• Sequential MC aka 

• green's function Monte Carlo 

• transfer matrix Monte Carlo 

• population Monte Carlo 

• Monte Carlo ]lter 

• particle ]lter 

• bootstrap ]lter 

• SISR (sequential importance                                                                                

sampling with resampling) 

• Central idea of SMC 

• approximate probability distribution by (weighted) ensemble of particles 

• by using Markov chain 

• control variance by resampling

27

https://www.researchgate.net/]gure/Sequential-Monte-Carlo-scheme_]g2_322302619
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A simple example

• estimate mean of product of  random numbers: 

•  is sampled independently randomly from uniform distribution between 0 and 2 

• expectation value:  

•typical value of product  

• variance increases rapidly for large  (4, 8, 16, 32, 64)

N

xk
Γ = 1

∼ exp[(log 2 − 1)N ]
N

28

E[X1X2⋯XN] = Γ
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Var[X1X2⋯XN] ∼ (4/3)N
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Resampling

• Simple sequential importance sampling becomes unstable for large 

steps 

• weight of each walker is updated randomly by weight factors:  

• random walk diffusion in logarithmic scale 

• weight degeneracy: weight variance (discrepancy between weights) grows 

exponentially and only a few walkers dominate 

• Resampling is necessary to stabilize the algorithm 

• resampling:  

                ⇒   

• after resampling, all walkers share the same                                                        

weight: 

W = w1w2w3⋯

Pi ≃ ∑
k

Wkδi,ik ∑
k

δi,ĩk

∑
k

Wk /Nw

29

Li-Stattar-Sun (2012)
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Effect of resampling

•  is sampled independently randomly from uniform distribution 

between 0 and 2

ξk

30

xk = ξkxk−1 (k = 1,2,⋯, n)
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Summary and outlook

• 5 steps to MCMC-ize your TRG algorithms 

1. Select the TRG method most appropriate for your target. 

2. Rewrite it into a projector formalism (replace SVD by projector insertion) 

• This step is a bit non-trivial 

3. Perform (deterministic and optimal) TRG method to collect a complete set of 

rank-1 projectors and their weights (singular values) 

• We have already developed a library for this purpose (but in Python) 

4. If your TRG method assumes translational symmetry (an O(log N) method), convert 

it to an O(N) procedure that does not assume translational symmetry 

• We have a prototype library that performs this conversion automatically (but in 

Python) 

5. Perform MCMC sampling 

• We have a generic prototype code for MCMC sampling (but in Python)

31
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Summary and outlook

• Developing a standard tensor network library 

• low-level, high-performance, portable, stable, and clean 

• gather good experiences from many existing libraries, and avoid bad practices 

• implemented in Rust, then wrappers for C/C++, Fortran, Python, Julia, etc 

• explicit memory management 

• thread-safe, MPI parallelization, GPU support 

• tensor contraction without transpose 

• support diagonal tensors, Grassmann tensors 

• + mid-level interfaces 

• tensor SVD, tensor QR, tensor functions, etc 

• + TensorMC support 

• projector generation, conversion into O(N) procedure, projector sampling, 

contraction graph and cache mechanism 

• The name is still a secret...
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